Filtros : "Structural and Multidisciplinary Optimization" "SILVA, EMILIO CARLOS NELLI" Removido: "HEURÍSTICA" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, FLUXO DOS FLUÍDOS, TURBULÊNCIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de et al. Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, v. 65, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03148-y. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Okubo Junior, C. M., Sá, A. N., & Silva, E. C. N. (2022). Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, 65, 1-18. doi:10.1007/s00158-021-03148-y
    • NLM

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
    • Vancouver

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, ALGORITMOS, FLUXO DOS FLUÍDOS, TROCADORES DE CALOR, ROTOR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Eduardo Moscatelli de et al. Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, v. 65, p. 1-23, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03233-w. Acesso em: 05 dez. 2025.
    • APA

      Souza, E. M. de, Alonso, D. H., Sá, L. F. N. de, Sanches, R. P., & Silva, E. C. N. (2022). Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, 65, 1-23. doi:10.1007/s00158-022-03233-w
    • NLM

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
    • Vancouver

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TOPOLOGIA, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANCHES, Renato Picelli et al. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, v. 65, n. 34, p. 1-34, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03118-4. Acesso em: 05 dez. 2025.
    • APA

      Sanches, R. P., Souza, E. M. de, Yamabe, P. V. M., Alonso, D. H., Ranjbarzadeh, S., Gioria, R. dos S., et al. (2022). Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, 65( 34), 1-34. doi:10.1007/s00158-021-03118-4
    • NLM

      Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
    • Vancouver

      Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: CIRCULAÇÃO SANGUÍNEA, TROMBOSE, MÉTODO DOS ELEMENTOS FINITOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, v. 65, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03251-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2022). Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, 65, 1-25. doi:10.1007/s00158-022-03251-8
    • NLM

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
    • Vancouver

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TOPOLOGIA, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Kamilla Emily Santos et al. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, v. 65, n. 337, p. 18 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03442-3. Acesso em: 05 dez. 2025.
    • APA

      Silva, K. E. S., Sivapuram, R., Ranjbarzadeh, S., Gioria, R. dos S., Silva, E. C. N., & Sanches, R. P. (2022). Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, 65( 337), 18 2022. doi:10.1007/s00158-022-03442-3
    • NLM

      Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
    • Vancouver

      Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TURBULÊNCIA, PROGRAMAÇÃO LINEAR, FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, p. 65-82, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03106-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., Sanches, R. P., & Silva, E. C. N. (2022). Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, 65-82. doi:10.1007/s00158-021-03106-8
    • NLM

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
    • Vancouver

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ADSORÇÃO, MUDANÇA DE FASE, TOPOLOGIA, GÁS NATURAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 05 dez. 2025.
    • APA

      Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
    • NLM

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
    • Vancouver

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TURBULÊNCIA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e GARCIA RODRIGUEZ, Luis Fernando e SILVA, Emílio Carlos Nelli. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, v. 64, p. 4409–4440, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03061-4. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Garcia Rodriguez, L. F., & Silva, E. C. N. (2021). Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, 64, 4409–4440. doi:10.1007/s00158-021-03061-4
    • NLM

      Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03061-4
    • Vancouver

      Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03061-4
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, FLUXO DOS FLUÍDOS, MÉTODO DOS ELEMENTOS FINITOS, HEMODIÁLISE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Topology optimization for blood flow considering a hemolysis model. Structural and Multidisciplinary Optimization, v. 63, p. 2101–2123, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02806-x. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2021). Topology optimization for blood flow considering a hemolysis model. Structural and Multidisciplinary Optimization, 63, 2101–2123. doi:10.1007/s00158-020-02806-x
    • NLM

      Alonso DH, Silva ECN. Topology optimization for blood flow considering a hemolysis model [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 63 2101–2123.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02806-x
    • Vancouver

      Alonso DH, Silva ECN. Topology optimization for blood flow considering a hemolysis model [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 63 2101–2123.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02806-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODOS TOPOLÓGICOS, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICELLI, Renato et al. Topology optimization of binary structures under design-dependent fluid-structure interaction loads. Structural and Multidisciplinary Optimization, v. 62, p. 2101–2116, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02598-0. Acesso em: 05 dez. 2025.
    • APA

      Picelli, R., Ranjbarzadeh, S., Sivapuram, R., Gioria, R. dos S., & Silva, E. C. N. (2020). Topology optimization of binary structures under design-dependent fluid-structure interaction loads. Structural and Multidisciplinary Optimization, 62, 2101–2116. doi:10.1007/s00158-020-02598-0
    • NLM

      Picelli R, Ranjbarzadeh S, Sivapuram R, Gioria R dos S, Silva ECN. Topology optimization of binary structures under design-dependent fluid-structure interaction loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2101–2116.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02598-0
    • Vancouver

      Picelli R, Ranjbarzadeh S, Sivapuram R, Gioria R dos S, Silva ECN. Topology optimization of binary structures under design-dependent fluid-structure interaction loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2101–2116.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02598-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e ROMERO SAENZ, Juan Sergio e SILVA, Emílio Carlos Nelli. Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, v. 62, n. 1, p. 299–321, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02499-2. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., & Silva, E. C. N. (2020). Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, 62( 1), 299–321. doi:10.1007/s00158-020-02499-2
    • NLM

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
    • Vancouver

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
  • Source: Structural and Multidisciplinary Optimization. Conference titles: World Congress on Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ESTRUTURAS, TOPOLOGIA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACAR, Erdem et al. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. Disponível em: https://doi.org/10.1007/s00158-020-02579-3. Acesso em: 05 dez. 2025. , 2020
    • APA

      Acar, E., Jianbin, D., Saka, M. P., Sigmund, O., & Silva, E. C. N. (2020). Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. doi:10.1007/s00158-020-02579-3
    • NLM

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
    • Vancouver

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ROBÔS, ROBÓTICA, ATUADORES PIEZELÉTRICOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Eduardo Moscatelli de e SILVA, Emílio Carlos Nelli. Topology optimization applied to the design of actuators driven by pressure loads. Structural and Multidisciplinary Optimization, v. 61, p. 1763–1786, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-019-02421-5. Acesso em: 05 dez. 2025.
    • APA

      Souza, E. M. de, & Silva, E. C. N. (2020). Topology optimization applied to the design of actuators driven by pressure loads. Structural and Multidisciplinary Optimization, 61, 1763–1786. doi:10.1007/s00158-019-02421-5
    • NLM

      Souza EM de, Silva ECN. Topology optimization applied to the design of actuators driven by pressure loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 1763–1786.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-019-02421-5
    • Vancouver

      Souza EM de, Silva ECN. Topology optimization applied to the design of actuators driven by pressure loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 1763–1786.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-019-02421-5
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, LUBRIFICAÇÃO, MECÂNICA DOS FLUÍDOS, FLUXO DOS FLUÍDOS, DISSIPADORES DE ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KATSUNO, Eduardo Tadashi e DANTAS, João Lucas Dozzi e SILVA, Emílio Carlos Nelli. Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, v. 62, p. 2915–2933, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02706-0. Acesso em: 05 dez. 2025.
    • APA

      Katsuno, E. T., Dantas, J. L. D., & Silva, E. C. N. (2020). Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, 62, 2915–2933. doi:10.1007/s00158-020-02706-0
    • NLM

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
    • Vancouver

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, FLUXO DOS FLUÍDOS, MOTORES ELÉTRICOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luiz Alexandre Nogueira de et al. Topology optimization applied to the development of small scale pump. Structural and Multidisciplinary Optimization, v. 58, p. 2045–2059, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-1966-7. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. A. N. de, Romero, J. S., Horikawa, O., & Silva, E. C. N. (2018). Topology optimization applied to the development of small scale pump. Structural and Multidisciplinary Optimization, 58, 2045–2059. doi:10.1007/s00158-018-1966-7
    • NLM

      Sá LAN de, Romero JS, Horikawa O, Silva ECN. Topology optimization applied to the development of small scale pump [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2045–2059.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-1966-7
    • Vancouver

      Sá LAN de, Romero JS, Horikawa O, Silva ECN. Topology optimization applied to the development of small scale pump [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2045–2059.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-1966-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: FLUXO LAMINAR DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES, TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, BOMBAS CENTRÍFUGAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, v. 58, p. 2341–2364, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-012-0847-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Sá, L. F. N. de, Romero Saenz, J. S., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58, 2341–2364. doi:10.1007/s00158-012-0847-8
    • NLM

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
    • Vancouver

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TRANSFERÊNCIA DE CALOR, ADSORÇÃO, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMIGO, Ricardo Cesare Román et al. Topology optimisation of biphasic adsorbent beds for gas storage. Structural and Multidisciplinary Optimization, v. 58, p. 2431–2454, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-2117-x. Acesso em: 05 dez. 2025.
    • APA

      Amigo, R. C. R., Prado, D. S., Paiva, J. L. de, Hewson, R. W., & Silva, E. C. N. (2018). Topology optimisation of biphasic adsorbent beds for gas storage. Structural and Multidisciplinary Optimization, 58, 2431–2454. doi:10.1007/s00158-018-2117-x
    • NLM

      Amigo RCR, Prado DS, Paiva JL de, Hewson RW, Silva ECN. Topology optimisation of biphasic adsorbent beds for gas storage [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2431–2454.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2117-x
    • Vancouver

      Amigo RCR, Prado DS, Paiva JL de, Hewson RW, Silva ECN. Topology optimisation of biphasic adsorbent beds for gas storage [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2431–2454.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2117-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ROTOR, TURBOMOTORES, MÉTODOS TOPOLÓGICOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, L. F. N. et al. Design optimization of laminar flow machine rotors based on the topological derivative concep. Structural and Multidisciplinary Optimization, v. 56, n. 5, p. 1013–1026, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-017-1698-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N., Novotny, A. A., Romero, J. S., & Silva, E. C. N. (2017). Design optimization of laminar flow machine rotors based on the topological derivative concep. Structural and Multidisciplinary Optimization, 56( 5), 1013–1026. doi:10.1007/s00158-017-1698-0
    • NLM

      Sá LFN, Novotny AA, Romero JS, Silva ECN. Design optimization of laminar flow machine rotors based on the topological derivative concep [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 56( 5): 1013–1026.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1698-0
    • Vancouver

      Sá LFN, Novotny AA, Romero JS, Silva ECN. Design optimization of laminar flow machine rotors based on the topological derivative concep [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 56( 5): 1013–1026.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1698-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO, J. S. Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, v. 55, p. 1711–1732, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1599-7. Acesso em: 05 dez. 2025.
    • APA

      Romero, J. S. (2017). Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, 55, 1711–1732. doi:10.1007/s00158-016-1599-7
    • NLM

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
    • Vancouver

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, VÓRTICES DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de e AMIGO, Ricardo Cesare Román e SILVA, Emílio Carlos Nelli. Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, v. 54, n. 2, p. 249–264, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1399-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Amigo, R. C. R., & Silva, E. C. N. (2016). Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, 54( 2), 249–264. doi:10.1007/s00158-016-1399-0
    • NLM

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0
    • Vancouver

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025