Filtros : "Structural and Multidisciplinary Optimization" "Silva, Emílio Carlos Nelli" Removido: "MÉTODOS TOPOLÓGICOS" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, FLUXO DOS FLUÍDOS, TURBULÊNCIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de et al. Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, v. 65, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03148-y. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Okubo Junior, C. M., Sá, A. N., & Silva, E. C. N. (2022). Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, 65, 1-18. doi:10.1007/s00158-021-03148-y
    • NLM

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
    • Vancouver

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, ALGORITMOS, FLUXO DOS FLUÍDOS, TROCADORES DE CALOR, ROTOR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Eduardo Moscatelli de et al. Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, v. 65, p. 1-23, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03233-w. Acesso em: 05 dez. 2025.
    • APA

      Souza, E. M. de, Alonso, D. H., Sá, L. F. N. de, Sanches, R. P., & Silva, E. C. N. (2022). Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, 65, 1-23. doi:10.1007/s00158-022-03233-w
    • NLM

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
    • Vancouver

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: CIRCULAÇÃO SANGUÍNEA, TROMBOSE, MÉTODO DOS ELEMENTOS FINITOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, v. 65, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03251-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2022). Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, 65, 1-25. doi:10.1007/s00158-022-03251-8
    • NLM

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
    • Vancouver

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TURBULÊNCIA, PROGRAMAÇÃO LINEAR, FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, p. 65-82, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03106-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., Sanches, R. P., & Silva, E. C. N. (2022). Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, 65-82. doi:10.1007/s00158-021-03106-8
    • NLM

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
    • Vancouver

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ADSORÇÃO, MUDANÇA DE FASE, TOPOLOGIA, GÁS NATURAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 05 dez. 2025.
    • APA

      Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
    • NLM

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
    • Vancouver

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e ROMERO SAENZ, Juan Sergio e SILVA, Emílio Carlos Nelli. Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, v. 62, n. 1, p. 299–321, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02499-2. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., & Silva, E. C. N. (2020). Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, 62( 1), 299–321. doi:10.1007/s00158-020-02499-2
    • NLM

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
    • Vancouver

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
  • Source: Structural and Multidisciplinary Optimization. Conference titles: World Congress on Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ESTRUTURAS, TOPOLOGIA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACAR, Erdem et al. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. Disponível em: https://doi.org/10.1007/s00158-020-02579-3. Acesso em: 05 dez. 2025. , 2020
    • APA

      Acar, E., Jianbin, D., Saka, M. P., Sigmund, O., & Silva, E. C. N. (2020). Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. doi:10.1007/s00158-020-02579-3
    • NLM

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
    • Vancouver

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ROBÔS, ROBÓTICA, ATUADORES PIEZELÉTRICOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Eduardo Moscatelli de e SILVA, Emílio Carlos Nelli. Topology optimization applied to the design of actuators driven by pressure loads. Structural and Multidisciplinary Optimization, v. 61, p. 1763–1786, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-019-02421-5. Acesso em: 05 dez. 2025.
    • APA

      Souza, E. M. de, & Silva, E. C. N. (2020). Topology optimization applied to the design of actuators driven by pressure loads. Structural and Multidisciplinary Optimization, 61, 1763–1786. doi:10.1007/s00158-019-02421-5
    • NLM

      Souza EM de, Silva ECN. Topology optimization applied to the design of actuators driven by pressure loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 1763–1786.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-019-02421-5
    • Vancouver

      Souza EM de, Silva ECN. Topology optimization applied to the design of actuators driven by pressure loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 1763–1786.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-019-02421-5
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, LUBRIFICAÇÃO, MECÂNICA DOS FLUÍDOS, FLUXO DOS FLUÍDOS, DISSIPADORES DE ENERGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KATSUNO, Eduardo Tadashi e DANTAS, João Lucas Dozzi e SILVA, Emílio Carlos Nelli. Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, v. 62, p. 2915–2933, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02706-0. Acesso em: 05 dez. 2025.
    • APA

      Katsuno, E. T., Dantas, J. L. D., & Silva, E. C. N. (2020). Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, 62, 2915–2933. doi:10.1007/s00158-020-02706-0
    • NLM

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
    • Vancouver

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: FLUXO LAMINAR DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES, TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, BOMBAS CENTRÍFUGAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, v. 58, p. 2341–2364, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-012-0847-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Sá, L. F. N. de, Romero Saenz, J. S., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58, 2341–2364. doi:10.1007/s00158-012-0847-8
    • NLM

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
    • Vancouver

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TRANSFERÊNCIA DE CALOR, ADSORÇÃO, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMIGO, Ricardo Cesare Román et al. Topology optimisation of biphasic adsorbent beds for gas storage. Structural and Multidisciplinary Optimization, v. 58, p. 2431–2454, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-2117-x. Acesso em: 05 dez. 2025.
    • APA

      Amigo, R. C. R., Prado, D. S., Paiva, J. L. de, Hewson, R. W., & Silva, E. C. N. (2018). Topology optimisation of biphasic adsorbent beds for gas storage. Structural and Multidisciplinary Optimization, 58, 2431–2454. doi:10.1007/s00158-018-2117-x
    • NLM

      Amigo RCR, Prado DS, Paiva JL de, Hewson RW, Silva ECN. Topology optimisation of biphasic adsorbent beds for gas storage [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2431–2454.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2117-x
    • Vancouver

      Amigo RCR, Prado DS, Paiva JL de, Hewson RW, Silva ECN. Topology optimisation of biphasic adsorbent beds for gas storage [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2431–2454.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2117-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, VÓRTICES DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de e AMIGO, Ricardo Cesare Román e SILVA, Emílio Carlos Nelli. Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, v. 54, n. 2, p. 249–264, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1399-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Amigo, R. C. R., & Silva, E. C. N. (2016). Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, 54( 2), 249–264. doi:10.1007/s00158-016-1399-0
    • NLM

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0
    • Vancouver

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ATUADORES PIEZELÉTRICOS, TOPOLOGIA (OTIMIZAÇÃO), SISTEMAS NÃO LINEARES, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAKEZAWA, A et al. Design methodology of piezoelectric energy-harvesting skin using topology optimization. Structural and Multidisciplinary Optimization, v. 49, p. 281-297, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00158-013-0974-x. Acesso em: 05 dez. 2025.
    • APA

      Takezawa, A., Kitamura, M., Vatanabe, S. L., & Silva, E. C. N. (2014). Design methodology of piezoelectric energy-harvesting skin using topology optimization. Structural and Multidisciplinary Optimization, 49, 281-297. doi:10.1007/s00158-013-0974-x
    • NLM

      Takezawa A, Kitamura M, Vatanabe SL, Silva ECN. Design methodology of piezoelectric energy-harvesting skin using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2014 ;49 281-297.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-013-0974-x
    • Vancouver

      Takezawa A, Kitamura M, Vatanabe SL, Silva ECN. Design methodology of piezoelectric energy-harvesting skin using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2014 ;49 281-297.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-013-0974-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ATUADORES PIEZELÉTRICOS, TOPOLOGIA (OTIMIZAÇÃO), SISTEMAS NÃO LINEARES, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIUSTI, S M e MELLO, Luís Augusto Motta e SILVA, Emílio Carlos Nelli. Piezoresistive device optimization using topological derivative concepts. Structural and Multidisciplinary Optimization, v. 50, n. 3, p. Se 2014, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00158-014-1064-4. Acesso em: 05 dez. 2025.
    • APA

      Giusti, S. M., Mello, L. A. M., & Silva, E. C. N. (2014). Piezoresistive device optimization using topological derivative concepts. Structural and Multidisciplinary Optimization, 50( 3), Se 2014. doi:10.1007/s00158-014-1064-4
    • NLM

      Giusti SM, Mello LAM, Silva ECN. Piezoresistive device optimization using topological derivative concepts [Internet]. Structural and Multidisciplinary Optimization. 2014 ; 50( 3): Se 2014.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-014-1064-4
    • Vancouver

      Giusti SM, Mello LAM, Silva ECN. Piezoresistive device optimization using topological derivative concepts [Internet]. Structural and Multidisciplinary Optimization. 2014 ; 50( 3): Se 2014.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-014-1064-4
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Assunto: TOPOLOGIA (OTIMIZAÇÃO)

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAKEZAWA, Akihiro et al. Topology optimization for designing strain-gauge load cells. Structural and Multidisciplinary Optimization, v. 42, n. 3, p. 387-402, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00158-010-0491-0. Acesso em: 05 dez. 2025.
    • APA

      Takezawa, A., Nishiwaki, S., Kitamura, M., & Silva, E. C. N. (2010). Topology optimization for designing strain-gauge load cells. Structural and Multidisciplinary Optimization, 42( 3), 387-402. doi:10.1007/s00158-010-0491-0
    • NLM

      Takezawa A, Nishiwaki S, Kitamura M, Silva ECN. Topology optimization for designing strain-gauge load cells [Internet]. Structural and Multidisciplinary Optimization. 2010 ;42( 3): 387-402.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-010-0491-0
    • Vancouver

      Takezawa A, Nishiwaki S, Kitamura M, Silva ECN. Topology optimization for designing strain-gauge load cells [Internet]. Structural and Multidisciplinary Optimization. 2010 ;42( 3): 387-402.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-010-0491-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA (OTIMIZAÇÃO), MATERIAIS COMPÓSITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Sylvia Regina Mesquita de e PAULINO, Gláucio Hermogenes e SILVA, Emílio Carlos Nelli. Layout and material gradation in topology optimization of functionally graded structures: a global–local approach. Structural and Multidisciplinary Optimization, v. 42, n. 6, p. 855-868, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00158-010-0514-x. Acesso em: 05 dez. 2025.
    • APA

      Almeida, S. R. M. de, Paulino, G. H., & Silva, E. C. N. (2010). Layout and material gradation in topology optimization of functionally graded structures: a global–local approach. Structural and Multidisciplinary Optimization, 42( 6), 855-868. doi:10.1007/s00158-010-0514-x
    • NLM

      Almeida SRM de, Paulino GH, Silva ECN. Layout and material gradation in topology optimization of functionally graded structures: a global–local approach [Internet]. Structural and Multidisciplinary Optimization. 2010 ;42( 6): 855-868.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-010-0514-x
    • Vancouver

      Almeida SRM de, Paulino GH, Silva ECN. Layout and material gradation in topology optimization of functionally graded structures: a global–local approach [Internet]. Structural and Multidisciplinary Optimization. 2010 ;42( 6): 855-868.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-010-0514-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA (OTIMIZAÇÃO), HEURÍSTICA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Sylvia Regina Mesquita de e PAULINO, Gláucio Hermogenes e SILVA, Emílio Carlos Nelli. A simple and effective inverse projection scheme for void distribution control in topology optimization. Structural and Multidisciplinary Optimization, v. 39, n. 4, p. 359-371, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00158-008-0332-6. Acesso em: 05 dez. 2025.
    • APA

      Almeida, S. R. M. de, Paulino, G. H., & Silva, E. C. N. (2009). A simple and effective inverse projection scheme for void distribution control in topology optimization. Structural and Multidisciplinary Optimization, 39( 4), 359-371. doi:10.1007/s00158-008-0332-6
    • NLM

      Almeida SRM de, Paulino GH, Silva ECN. A simple and effective inverse projection scheme for void distribution control in topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2009 ;39( 4): 359-371.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-008-0332-6
    • Vancouver

      Almeida SRM de, Paulino GH, Silva ECN. A simple and effective inverse projection scheme for void distribution control in topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2009 ;39( 4): 359-371.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-008-0332-6
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA (OTIMIZAÇÃO), MATERIAIS COMPÓSITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAULINO, Gláucio Hermogenes e SILVA, Emílio Carlos Nelli e CHAU, H Lee. Optimal design of periodic functionally graded composites with prescribed properties. Structural and Multidisciplinary Optimization, v. 38, n. ju 2009, p. 469-489, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00158-008-0300-1. Acesso em: 05 dez. 2025.
    • APA

      Paulino, G. H., Silva, E. C. N., & Chau, H. L. (2009). Optimal design of periodic functionally graded composites with prescribed properties. Structural and Multidisciplinary Optimization, 38( ju 2009), 469-489. doi:10.1007/s00158-008-0300-1
    • NLM

      Paulino GH, Silva ECN, Chau HL. Optimal design of periodic functionally graded composites with prescribed properties [Internet]. Structural and Multidisciplinary Optimization. 2009 ;38( ju 2009): 469-489.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-008-0300-1
    • Vancouver

      Paulino GH, Silva ECN, Chau HL. Optimal design of periodic functionally graded composites with prescribed properties [Internet]. Structural and Multidisciplinary Optimization. 2009 ;38( ju 2009): 469-489.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-008-0300-1
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA (OTIMIZAÇÃO), CONVERSÃO DE ENERGIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Emílio Carlos Nelli. Comments on “Topology optimization of energy harvesting devices using piezoelectric materials”. Structural and Multidisciplinary Optimization, v. 39, p. 337-338, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00158-009-0364-6. Acesso em: 05 dez. 2025.
    • APA

      Silva, E. C. N. (2009). Comments on “Topology optimization of energy harvesting devices using piezoelectric materials”. Structural and Multidisciplinary Optimization, 39, 337-338. doi:10.1007/s00158-009-0364-6
    • NLM

      Silva ECN. Comments on “Topology optimization of energy harvesting devices using piezoelectric materials” [Internet]. Structural and Multidisciplinary Optimization. 2009 ;39 337-338.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-009-0364-6
    • Vancouver

      Silva ECN. Comments on “Topology optimization of energy harvesting devices using piezoelectric materials” [Internet]. Structural and Multidisciplinary Optimization. 2009 ;39 337-338.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-009-0364-6
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ATUADORES PIEZELÉTRICOS, SENSORES ELETROMECÂNICOS, TOPOLOGIA (OTIMIZAÇÃO), MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTEALEGRE RUBIO, Wilfredo e SILVA, Emílio Carlos Nelli e NISHIWAKI, Shinji. Piezoresistive sensor design using topology optimization. Structural and Multidisciplinary Optimization, v. 36, p. 571–583, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00158-007-0191-6. Acesso em: 05 dez. 2025.
    • APA

      Montealegre Rubio, W., Silva, E. C. N., & Nishiwaki, S. (2008). Piezoresistive sensor design using topology optimization. Structural and Multidisciplinary Optimization, 36, 571–583. doi:10.1007/s00158-007-0191-6
    • NLM

      Montealegre Rubio W, Silva ECN, Nishiwaki S. Piezoresistive sensor design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2008 ; 36 571–583.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-007-0191-6
    • Vancouver

      Montealegre Rubio W, Silva ECN, Nishiwaki S. Piezoresistive sensor design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2008 ; 36 571–583.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-007-0191-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025