Filtros : "Structural and Multidisciplinary Optimization" "TURBULÊNCIA" Removido: "Financiamento FIPT" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, FLUXO DOS FLUÍDOS, TURBULÊNCIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de et al. Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, v. 65, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03148-y. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Okubo Junior, C. M., Sá, A. N., & Silva, E. C. N. (2022). Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, 65, 1-18. doi:10.1007/s00158-021-03148-y
    • NLM

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
    • Vancouver

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TURBULÊNCIA, PROGRAMAÇÃO LINEAR, FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, p. 65-82, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03106-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., Sanches, R. P., & Silva, E. C. N. (2022). Topology optimization method based on the Wray–Agarwal turbulence model. Structural and Multidisciplinary Optimization, 65-82. doi:10.1007/s00158-021-03106-8
    • NLM

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
    • Vancouver

      Alonso DH, Romero Saenz JS, Sanches RP, Silva ECN. Topology optimization method based on the Wray–Agarwal turbulence model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65-82.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03106-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TURBULÊNCIA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e GARCIA RODRIGUEZ, Luis Fernando e SILVA, Emílio Carlos Nelli. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, v. 64, p. 4409–4440, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03061-4. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Garcia Rodriguez, L. F., & Silva, E. C. N. (2021). Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint). Structural and Multidisciplinary Optimization, 64, 4409–4440. doi:10.1007/s00158-021-03061-4
    • NLM

      Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03061-4
    • Vancouver

      Alonso DH, Garcia Rodriguez LF, Silva ECN. Flexible framework for fluid topology optimization with OpenFOAM® and finite element‑based high‑level discrete adjoint method (FEniCS/ dolfin‑adjoint) [Internet]. Structural and Multidisciplinary Optimization. 2021 ;64 4409–4440.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03061-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025