Filtros : "Structural and Multidisciplinary Optimization" "TOPOLOGIA" Removido: "INTERAÇÃO FLUIDO-ESTRUTURA" Limpar

Filtros



Limitar por data


  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EESC

    Assuntos: CONSTRUÇÃO CIVIL, TOPOLOGIA, ESTRUTURAS, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Tiago et al. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, v. 67, n. 6, p. 1-34, 2024Tradução . . Disponível em: https://dx.doi.org/10.1007/s00158-024-03799-7. Acesso em: 05 dez. 2025.
    • APA

      Ribeiro, T., Bernardo, L., Carrazedo, R., & De Domenico, D. (2024). Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, 67( 6), 1-34. doi:10.1007/s00158-024-03799-7
    • NLM

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
    • Vancouver

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: TOPOLOGIA, FLUXO DOS FLUÍDOS, TURBULÊNCIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de et al. Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, v. 65, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03148-y. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Okubo Junior, C. M., Sá, A. N., & Silva, E. C. N. (2022). Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, 65, 1-18. doi:10.1007/s00158-021-03148-y
    • NLM

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
    • Vancouver

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: TOPOLOGIA, ALGORITMOS, FLUXO DOS FLUÍDOS, TROCADORES DE CALOR, ROTOR

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUZA, Eduardo Moscatelli de et al. Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, v. 65, p. 1-23, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03233-w. Acesso em: 05 dez. 2025.
    • APA

      Souza, E. M. de, Alonso, D. H., Sá, L. F. N. de, Sanches, R. P., & Silva, E. C. N. (2022). Topology optimisation for rotor‑stator fuid fow device. Structural and Multidisciplinary Optimization, 65, 1-23. doi:10.1007/s00158-022-03233-w
    • NLM

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
    • Vancouver

      Souza EM de, Alonso DH, Sá LFN de, Sanches RP, Silva ECN. Topology optimisation for rotor‑stator fuid fow device [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-23.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03233-w
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: ADSORÇÃO, MUDANÇA DE FASE, TOPOLOGIA, GÁS NATURAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 05 dez. 2025.
    • APA

      Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
    • NLM

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
    • Vancouver

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e ROMERO SAENZ, Juan Sergio e SILVA, Emílio Carlos Nelli. Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, v. 62, n. 1, p. 299–321, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02499-2. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., & Silva, E. C. N. (2020). Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, 62( 1), 299–321. doi:10.1007/s00158-020-02499-2
    • NLM

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
    • Vancouver

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
  • Fonte: Structural and Multidisciplinary Optimization. Nome do evento: World Congress on Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: ESTRUTURAS, TOPOLOGIA

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACAR, Erdem et al. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. Disponível em: https://doi.org/10.1007/s00158-020-02579-3. Acesso em: 05 dez. 2025. , 2020
    • APA

      Acar, E., Jianbin, D., Saka, M. P., Sigmund, O., & Silva, E. C. N. (2020). Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. doi:10.1007/s00158-020-02579-3
    • NLM

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
    • Vancouver

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: TOPOLOGIA, LUBRIFICAÇÃO, MECÂNICA DOS FLUÍDOS, FLUXO DOS FLUÍDOS, DISSIPADORES DE ENERGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KATSUNO, Eduardo Tadashi e DANTAS, João Lucas Dozzi e SILVA, Emílio Carlos Nelli. Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, v. 62, p. 2915–2933, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02706-0. Acesso em: 05 dez. 2025.
    • APA

      Katsuno, E. T., Dantas, J. L. D., & Silva, E. C. N. (2020). Low-friction fluid flow surface design using topology optimization. Structural and Multidisciplinary Optimization, 62, 2915–2933. doi:10.1007/s00158-020-02706-0
    • NLM

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
    • Vancouver

      Katsuno ET, Dantas JLD, Silva ECN. Low-friction fluid flow surface design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2915–2933.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02706-0
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EESC

    Assuntos: ROBUSTEZ, TENSÃO ESTRUTURAL, TOPOLOGIA, ESTRUTURAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e CARDOSO, Eduardo Lenz e BECK, André Teófilo. Non-probabilistic robust continuum topology optimization with stress constraints. Structural and Multidisciplinary Optimization, v. 59, n. 4, p. 1181-1197, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-2122-0. Acesso em: 05 dez. 2025.
    • APA

      Silva, G. A. da, Cardoso, E. L., & Beck, A. T. (2019). Non-probabilistic robust continuum topology optimization with stress constraints. Structural and Multidisciplinary Optimization, 59( 4), 1181-1197. doi:10.1007/s00158-018-2122-0
    • NLM

      Silva GA da, Cardoso EL, Beck AT. Non-probabilistic robust continuum topology optimization with stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 59( 4): 1181-1197.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2122-0
    • Vancouver

      Silva GA da, Cardoso EL, Beck AT. Non-probabilistic robust continuum topology optimization with stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 59( 4): 1181-1197.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2122-0
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EESC

    Assuntos: TOPOLOGIA, TENSÃO ESTRUTURAL, ESTRUTURAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e BECK, André Teófilo. Reliability-based topology optimization of continuum structures subject to local stress constraints. Structural and Multidisciplinary Optimization, v. 57, n. 6, p. 2339-2355, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-017-1865-3. Acesso em: 05 dez. 2025.
    • APA

      Silva, G. A. da, & Beck, A. T. (2018). Reliability-based topology optimization of continuum structures subject to local stress constraints. Structural and Multidisciplinary Optimization, 57( 6), 2339-2355. doi:10.1007/s00158-017-1865-3
    • NLM

      Silva GA da, Beck AT. Reliability-based topology optimization of continuum structures subject to local stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 57( 6): 2339-2355.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1865-3
    • Vancouver

      Silva GA da, Beck AT. Reliability-based topology optimization of continuum structures subject to local stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 57( 6): 2339-2355.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1865-3
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: FLUXO LAMINAR DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES, TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, BOMBAS CENTRÍFUGAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, v. 58, p. 2341–2364, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-012-0847-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Sá, L. F. N. de, Romero Saenz, J. S., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58, 2341–2364. doi:10.1007/s00158-012-0847-8
    • NLM

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
    • Vancouver

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO, J. S. Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, v. 55, p. 1711–1732, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1599-7. Acesso em: 05 dez. 2025.
    • APA

      Romero, J. S. (2017). Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, 55, 1711–1732. doi:10.1007/s00158-016-1599-7
    • NLM

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
    • Vancouver

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
  • Fonte: Structural and Multidisciplinary Optimization. Unidade: EP

    Assuntos: TOPOLOGIA, VÓRTICES DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de e AMIGO, Ricardo Cesare Román e SILVA, Emílio Carlos Nelli. Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, v. 54, n. 2, p. 249–264, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1399-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Amigo, R. C. R., & Silva, E. C. N. (2016). Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, 54( 2), 249–264. doi:10.1007/s00158-016-1399-0
    • NLM

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0
    • Vancouver

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025