Filtros : "Structural and Multidisciplinary Optimization" "TOPOLOGIA" Removido: "FLUXO DOS FLUÍDOS" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: CONSTRUÇÃO CIVIL, TOPOLOGIA, ESTRUTURAS, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Tiago et al. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, v. 67, n. 6, p. 1-34, 2024Tradução . . Disponível em: https://dx.doi.org/10.1007/s00158-024-03799-7. Acesso em: 05 dez. 2025.
    • APA

      Ribeiro, T., Bernardo, L., Carrazedo, R., & De Domenico, D. (2024). Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, 67( 6), 1-34. doi:10.1007/s00158-024-03799-7
    • NLM

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
    • Vancouver

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TOPOLOGIA, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANCHES, Renato Picelli et al. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, v. 65, n. 34, p. 1-34, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03118-4. Acesso em: 05 dez. 2025.
    • APA

      Sanches, R. P., Souza, E. M. de, Yamabe, P. V. M., Alonso, D. H., Ranjbarzadeh, S., Gioria, R. dos S., et al. (2022). Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure. Structural and Multidisciplinary Optimization, 65( 34), 1-34. doi:10.1007/s00158-021-03118-4
    • NLM

      Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
    • Vancouver

      Sanches RP, Souza EM de, Yamabe PVM, Alonso DH, Ranjbarzadeh S, Gioria R dos S, Meneghini JR, Silva ECN. Topology optimization of turbulent fluid flow via the TOBS method and a geometry trimming procedure [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 34): 1-34.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03118-4
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, TOPOLOGIA, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Kamilla Emily Santos et al. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, v. 65, n. 337, p. 18 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03442-3. Acesso em: 05 dez. 2025.
    • APA

      Silva, K. E. S., Sivapuram, R., Ranjbarzadeh, S., Gioria, R. dos S., Silva, E. C. N., & Sanches, R. P. (2022). Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method. Structural and Multidisciplinary Optimization, 65( 337), 18 2022. doi:10.1007/s00158-022-03442-3
    • NLM

      Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
    • Vancouver

      Silva KES, Sivapuram R, Ranjbarzadeh S, Gioria R dos S, Silva ECN, Sanches RP. Topology optimization of stationary fluid–structure interaction problems including large displacements via the TOBS-GT method [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 337): 18 2022.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03442-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ADSORÇÃO, MUDANÇA DE FASE, TOPOLOGIA, GÁS NATURAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 05 dez. 2025.
    • APA

      Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
    • NLM

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
    • Vancouver

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODOS TOPOLÓGICOS, INTERAÇÃO FLUIDO-ESTRUTURA, FLUXO LAMINAR DOS FLUÍDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICELLI, Renato et al. Topology optimization of binary structures under design-dependent fluid-structure interaction loads. Structural and Multidisciplinary Optimization, v. 62, p. 2101–2116, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02598-0. Acesso em: 05 dez. 2025.
    • APA

      Picelli, R., Ranjbarzadeh, S., Sivapuram, R., Gioria, R. dos S., & Silva, E. C. N. (2020). Topology optimization of binary structures under design-dependent fluid-structure interaction loads. Structural and Multidisciplinary Optimization, 62, 2101–2116. doi:10.1007/s00158-020-02598-0
    • NLM

      Picelli R, Ranjbarzadeh S, Sivapuram R, Gioria R dos S, Silva ECN. Topology optimization of binary structures under design-dependent fluid-structure interaction loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2101–2116.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02598-0
    • Vancouver

      Picelli R, Ranjbarzadeh S, Sivapuram R, Gioria R dos S, Silva ECN. Topology optimization of binary structures under design-dependent fluid-structure interaction loads [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62 2101–2116.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02598-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e ROMERO SAENZ, Juan Sergio e SILVA, Emílio Carlos Nelli. Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, v. 62, n. 1, p. 299–321, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02499-2. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., & Silva, E. C. N. (2020). Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, 62( 1), 299–321. doi:10.1007/s00158-020-02499-2
    • NLM

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
    • Vancouver

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
  • Source: Structural and Multidisciplinary Optimization. Conference titles: World Congress on Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ESTRUTURAS, TOPOLOGIA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACAR, Erdem et al. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. Disponível em: https://doi.org/10.1007/s00158-020-02579-3. Acesso em: 05 dez. 2025. , 2020
    • APA

      Acar, E., Jianbin, D., Saka, M. P., Sigmund, O., & Silva, E. C. N. (2020). Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. doi:10.1007/s00158-020-02579-3
    • NLM

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
    • Vancouver

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: ROBUSTEZ, TENSÃO ESTRUTURAL, TOPOLOGIA, ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e CARDOSO, Eduardo Lenz e BECK, André Teófilo. Non-probabilistic robust continuum topology optimization with stress constraints. Structural and Multidisciplinary Optimization, v. 59, n. 4, p. 1181-1197, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-2122-0. Acesso em: 05 dez. 2025.
    • APA

      Silva, G. A. da, Cardoso, E. L., & Beck, A. T. (2019). Non-probabilistic robust continuum topology optimization with stress constraints. Structural and Multidisciplinary Optimization, 59( 4), 1181-1197. doi:10.1007/s00158-018-2122-0
    • NLM

      Silva GA da, Cardoso EL, Beck AT. Non-probabilistic robust continuum topology optimization with stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 59( 4): 1181-1197.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2122-0
    • Vancouver

      Silva GA da, Cardoso EL, Beck AT. Non-probabilistic robust continuum topology optimization with stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 59( 4): 1181-1197.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2122-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: TOPOLOGIA, TENSÃO ESTRUTURAL, ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e BECK, André Teófilo. Reliability-based topology optimization of continuum structures subject to local stress constraints. Structural and Multidisciplinary Optimization, v. 57, n. 6, p. 2339-2355, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-017-1865-3. Acesso em: 05 dez. 2025.
    • APA

      Silva, G. A. da, & Beck, A. T. (2018). Reliability-based topology optimization of continuum structures subject to local stress constraints. Structural and Multidisciplinary Optimization, 57( 6), 2339-2355. doi:10.1007/s00158-017-1865-3
    • NLM

      Silva GA da, Beck AT. Reliability-based topology optimization of continuum structures subject to local stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 57( 6): 2339-2355.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1865-3
    • Vancouver

      Silva GA da, Beck AT. Reliability-based topology optimization of continuum structures subject to local stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 57( 6): 2339-2355.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1865-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: FLUXO LAMINAR DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES, TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, BOMBAS CENTRÍFUGAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, v. 58, p. 2341–2364, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-012-0847-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Sá, L. F. N. de, Romero Saenz, J. S., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58, 2341–2364. doi:10.1007/s00158-012-0847-8
    • NLM

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
    • Vancouver

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO, J. S. Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, v. 55, p. 1711–1732, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1599-7. Acesso em: 05 dez. 2025.
    • APA

      Romero, J. S. (2017). Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, 55, 1711–1732. doi:10.1007/s00158-016-1599-7
    • NLM

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
    • Vancouver

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, VÓRTICES DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de e AMIGO, Ricardo Cesare Román e SILVA, Emílio Carlos Nelli. Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, v. 54, n. 2, p. 249–264, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1399-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Amigo, R. C. R., & Silva, E. C. N. (2016). Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, 54( 2), 249–264. doi:10.1007/s00158-016-1399-0
    • NLM

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0
    • Vancouver

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025