Filtros : "Structural and Multidisciplinary Optimization" "MÉTODO DOS ELEMENTOS FINITOS" Removido: "Kitamura, M" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: CONSTRUÇÃO CIVIL, TOPOLOGIA, ESTRUTURAS, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Tiago et al. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, v. 67, n. 6, p. 1-34, 2024Tradução . . Disponível em: https://dx.doi.org/10.1007/s00158-024-03799-7. Acesso em: 05 dez. 2025.
    • APA

      Ribeiro, T., Bernardo, L., Carrazedo, R., & De Domenico, D. (2024). Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, 67( 6), 1-34. doi:10.1007/s00158-024-03799-7
    • NLM

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
    • Vancouver

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, FLUXO DOS FLUÍDOS, TURBULÊNCIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de et al. Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, v. 65, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03148-y. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Okubo Junior, C. M., Sá, A. N., & Silva, E. C. N. (2022). Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, 65, 1-18. doi:10.1007/s00158-021-03148-y
    • NLM

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
    • Vancouver

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: CIRCULAÇÃO SANGUÍNEA, TROMBOSE, MÉTODO DOS ELEMENTOS FINITOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, v. 65, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03251-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2022). Blood flow topology optimization considering a thrombosis model. Structural and Multidisciplinary Optimization, 65, 1-25. doi:10.1007/s00158-022-03251-8
    • NLM

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
    • Vancouver

      Alonso DH, Silva ECN. Blood flow topology optimization considering a thrombosis model [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-25.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03251-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ADSORÇÃO, MUDANÇA DE FASE, TOPOLOGIA, GÁS NATURAL, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRADO, Diego Silva et al. Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, v. 62, n. 2, p. 473–503, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-02918-y. Acesso em: 05 dez. 2025.
    • APA

      Prado, D. S., Amigo, R. C. R., Hewson, R. W., & Silva, E. C. N. (2021). Functionally graded optimisation of adsorption systems with phase change materials. Structural and Multidisciplinary Optimization, 62( 2), 473–503. doi:10.1007/s00158-021-02918-y
    • NLM

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
    • Vancouver

      Prado DS, Amigo RCR, Hewson RW, Silva ECN. Functionally graded optimisation of adsorption systems with phase change materials [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 62( 2): 473–503.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-02918-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS, FLUXO DOS FLUÍDOS, MÉTODO DOS ELEMENTOS FINITOS, HEMODIÁLISE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e SILVA, Emílio Carlos Nelli. Topology optimization for blood flow considering a hemolysis model. Structural and Multidisciplinary Optimization, v. 63, p. 2101–2123, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02806-x. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., & Silva, E. C. N. (2021). Topology optimization for blood flow considering a hemolysis model. Structural and Multidisciplinary Optimization, 63, 2101–2123. doi:10.1007/s00158-020-02806-x
    • NLM

      Alonso DH, Silva ECN. Topology optimization for blood flow considering a hemolysis model [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 63 2101–2123.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02806-x
    • Vancouver

      Alonso DH, Silva ECN. Topology optimization for blood flow considering a hemolysis model [Internet]. Structural and Multidisciplinary Optimization. 2021 ; 63 2101–2123.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02806-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e ROMERO SAENZ, Juan Sergio e SILVA, Emílio Carlos Nelli. Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, v. 62, n. 1, p. 299–321, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02499-2. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., & Silva, E. C. N. (2020). Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, 62( 1), 299–321. doi:10.1007/s00158-020-02499-2
    • NLM

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
    • Vancouver

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: FLUXO LAMINAR DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES, TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, BOMBAS CENTRÍFUGAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi et al. Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, v. 58, p. 2341–2364, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-012-0847-8. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Sá, L. F. N. de, Romero Saenz, J. S., & Silva, E. C. N. (2018). Topology optimization applied to the design of 2D swirl flow devices. Structural and Multidisciplinary Optimization, 58, 2341–2364. doi:10.1007/s00158-012-0847-8
    • NLM

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
    • Vancouver

      Alonso DH, Sá LFN de, Romero Saenz JS, Silva ECN. Topology optimization applied to the design of 2D swirl flow devices [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2341–2364.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-012-0847-8
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TRANSFERÊNCIA DE CALOR, ADSORÇÃO, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMIGO, Ricardo Cesare Román et al. Topology optimisation of biphasic adsorbent beds for gas storage. Structural and Multidisciplinary Optimization, v. 58, p. 2431–2454, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-2117-x. Acesso em: 05 dez. 2025.
    • APA

      Amigo, R. C. R., Prado, D. S., Paiva, J. L. de, Hewson, R. W., & Silva, E. C. N. (2018). Topology optimisation of biphasic adsorbent beds for gas storage. Structural and Multidisciplinary Optimization, 58, 2431–2454. doi:10.1007/s00158-018-2117-x
    • NLM

      Amigo RCR, Prado DS, Paiva JL de, Hewson RW, Silva ECN. Topology optimisation of biphasic adsorbent beds for gas storage [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2431–2454.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2117-x
    • Vancouver

      Amigo RCR, Prado DS, Paiva JL de, Hewson RW, Silva ECN. Topology optimisation of biphasic adsorbent beds for gas storage [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 58 2431–2454.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2117-x
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO, J. S. Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, v. 55, p. 1711–1732, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1599-7. Acesso em: 05 dez. 2025.
    • APA

      Romero, J. S. (2017). Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, 55, 1711–1732. doi:10.1007/s00158-016-1599-7
    • NLM

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
    • Vancouver

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ATUADORES PIEZELÉTRICOS, TOPOLOGIA (OTIMIZAÇÃO), SISTEMAS NÃO LINEARES, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIUSTI, S M e MELLO, Luís Augusto Motta e SILVA, Emílio Carlos Nelli. Piezoresistive device optimization using topological derivative concepts. Structural and Multidisciplinary Optimization, v. 50, n. 3, p. Se 2014, 2014Tradução . . Disponível em: https://doi.org/10.1007/s00158-014-1064-4. Acesso em: 05 dez. 2025.
    • APA

      Giusti, S. M., Mello, L. A. M., & Silva, E. C. N. (2014). Piezoresistive device optimization using topological derivative concepts. Structural and Multidisciplinary Optimization, 50( 3), Se 2014. doi:10.1007/s00158-014-1064-4
    • NLM

      Giusti SM, Mello LAM, Silva ECN. Piezoresistive device optimization using topological derivative concepts [Internet]. Structural and Multidisciplinary Optimization. 2014 ; 50( 3): Se 2014.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-014-1064-4
    • Vancouver

      Giusti SM, Mello LAM, Silva ECN. Piezoresistive device optimization using topological derivative concepts [Internet]. Structural and Multidisciplinary Optimization. 2014 ; 50( 3): Se 2014.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-014-1064-4
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ATUADORES PIEZELÉTRICOS, SENSORES ELETROMECÂNICOS, TOPOLOGIA (OTIMIZAÇÃO), MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTEALEGRE RUBIO, Wilfredo e SILVA, Emílio Carlos Nelli e NISHIWAKI, Shinji. Piezoresistive sensor design using topology optimization. Structural and Multidisciplinary Optimization, v. 36, p. 571–583, 2008Tradução . . Disponível em: https://doi.org/10.1007/s00158-007-0191-6. Acesso em: 05 dez. 2025.
    • APA

      Montealegre Rubio, W., Silva, E. C. N., & Nishiwaki, S. (2008). Piezoresistive sensor design using topology optimization. Structural and Multidisciplinary Optimization, 36, 571–583. doi:10.1007/s00158-007-0191-6
    • NLM

      Montealegre Rubio W, Silva ECN, Nishiwaki S. Piezoresistive sensor design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2008 ; 36 571–583.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-007-0191-6
    • Vancouver

      Montealegre Rubio W, Silva ECN, Nishiwaki S. Piezoresistive sensor design using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2008 ; 36 571–583.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-007-0191-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025