Filtros : "Structural and Multidisciplinary Optimization" "ESTRUTURAS" Removido: "HORIKAWA, OSWALDO" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: CONSTRUÇÃO CIVIL, TOPOLOGIA, ESTRUTURAS, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBEIRO, Tiago et al. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, v. 67, n. 6, p. 1-34, 2024Tradução . . Disponível em: https://dx.doi.org/10.1007/s00158-024-03799-7. Acesso em: 05 dez. 2025.
    • APA

      Ribeiro, T., Bernardo, L., Carrazedo, R., & De Domenico, D. (2024). Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study. Structural and Multidisciplinary Optimization, 67( 6), 1-34. doi:10.1007/s00158-024-03799-7
    • NLM

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
    • Vancouver

      Ribeiro T, Bernardo L, Carrazedo R, De Domenico D. Topology optimisation of steel connections under compression assisted by physical and geometrical nonlinear fnite element analysis and its application to an industrial case study [Internet]. Structural and Multidisciplinary Optimization. 2024 ; 67( 6): 1-34.[citado 2025 dez. 05 ] Available from: https://dx.doi.org/10.1007/s00158-024-03799-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: MECÂNICA DA FRATURA, ESTRUTURAS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Wellison José de Santana e GARMBIS, Alexandre Galiani e BECK, André Teófilo. Hybrid MCS‑FORM approach to solve inverse fracture mechanics reliability problems. Structural and Multidisciplinary Optimization, v. 65, n. 3, p. 1-20, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-022-03182-4. Acesso em: 05 dez. 2025.
    • APA

      Gomes, W. J. de S., Garmbis, A. G., & Beck, A. T. (2022). Hybrid MCS‑FORM approach to solve inverse fracture mechanics reliability problems. Structural and Multidisciplinary Optimization, 65( 3), 1-20. doi:10.1007/s00158-022-03182-4
    • NLM

      Gomes WJ de S, Garmbis AG, Beck AT. Hybrid MCS‑FORM approach to solve inverse fracture mechanics reliability problems [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 3): 1-20.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03182-4
    • Vancouver

      Gomes WJ de S, Garmbis AG, Beck AT. Hybrid MCS‑FORM approach to solve inverse fracture mechanics reliability problems [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65( 3): 1-20.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-022-03182-4
  • Source: Structural and Multidisciplinary Optimization. Conference titles: World Congress on Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ESTRUTURAS, TOPOLOGIA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ACAR, Erdem et al. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. Disponível em: https://doi.org/10.1007/s00158-020-02579-3. Acesso em: 05 dez. 2025. , 2020
    • APA

      Acar, E., Jianbin, D., Saka, M. P., Sigmund, O., & Silva, E. C. N. (2020). Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note. Structural and Multidisciplinary Optimization. Heidelberg, Germany: Springer. doi:10.1007/s00158-020-02579-3
    • NLM

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
    • Vancouver

      Acar E, Jianbin D, Saka MP, Sigmund O, Silva ECN. Special issue for the 13th world congress on structural and multidisciplinary optimization—editorial note [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 61 2225–2226.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02579-3
  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: ROBUSTEZ, TENSÃO ESTRUTURAL, TOPOLOGIA, ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e CARDOSO, Eduardo Lenz e BECK, André Teófilo. Non-probabilistic robust continuum topology optimization with stress constraints. Structural and Multidisciplinary Optimization, v. 59, n. 4, p. 1181-1197, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00158-018-2122-0. Acesso em: 05 dez. 2025.
    • APA

      Silva, G. A. da, Cardoso, E. L., & Beck, A. T. (2019). Non-probabilistic robust continuum topology optimization with stress constraints. Structural and Multidisciplinary Optimization, 59( 4), 1181-1197. doi:10.1007/s00158-018-2122-0
    • NLM

      Silva GA da, Cardoso EL, Beck AT. Non-probabilistic robust continuum topology optimization with stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 59( 4): 1181-1197.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2122-0
    • Vancouver

      Silva GA da, Cardoso EL, Beck AT. Non-probabilistic robust continuum topology optimization with stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 59( 4): 1181-1197.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-018-2122-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Assunto: ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TORII, André Jacomel et al. A performance measure approach for risk optimization. Structural and Multidisciplinary Optimization, v. 60, p. 927-947, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00158-019-02243-5. Acesso em: 05 dez. 2025.
    • APA

      Torii, A. J., Lopez, R. H., Beck, A. T., & Miguel, L. F. F. (2019). A performance measure approach for risk optimization. Structural and Multidisciplinary Optimization, 60, 927-947. doi:10.1007/s00158-019-02243-5
    • NLM

      Torii AJ, Lopez RH, Beck AT, Miguel LFF. A performance measure approach for risk optimization [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 60 927-947.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-019-02243-5
    • Vancouver

      Torii AJ, Lopez RH, Beck AT, Miguel LFF. A performance measure approach for risk optimization [Internet]. Structural and Multidisciplinary Optimization. 2019 ; 60 927-947.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-019-02243-5
  • Source: Structural and Multidisciplinary Optimization. Unidade: EESC

    Subjects: TOPOLOGIA, TENSÃO ESTRUTURAL, ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e BECK, André Teófilo. Reliability-based topology optimization of continuum structures subject to local stress constraints. Structural and Multidisciplinary Optimization, v. 57, n. 6, p. 2339-2355, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00158-017-1865-3. Acesso em: 05 dez. 2025.
    • APA

      Silva, G. A. da, & Beck, A. T. (2018). Reliability-based topology optimization of continuum structures subject to local stress constraints. Structural and Multidisciplinary Optimization, 57( 6), 2339-2355. doi:10.1007/s00158-017-1865-3
    • NLM

      Silva GA da, Beck AT. Reliability-based topology optimization of continuum structures subject to local stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 57( 6): 2339-2355.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1865-3
    • Vancouver

      Silva GA da, Beck AT. Reliability-based topology optimization of continuum structures subject to local stress constraints [Internet]. Structural and Multidisciplinary Optimization. 2018 ; 57( 6): 2339-2355.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1865-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025