Filtros : "Structural and Multidisciplinary Optimization" "EQUAÇÕES DE NAVIER-STOKES" Removido: "2018" Limpar

Filtros



Refine with date range


  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, FLUXO DOS FLUÍDOS, TURBULÊNCIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de et al. Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, v. 65, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00158-021-03148-y. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Okubo Junior, C. M., Sá, A. N., & Silva, E. C. N. (2022). Continuous boundary condition propagation model for topology optimization. Structural and Multidisciplinary Optimization, 65, 1-18. doi:10.1007/s00158-021-03148-y
    • NLM

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
    • Vancouver

      Sá LFN de, Okubo Junior CM, Sá AN, Silva ECN. Continuous boundary condition propagation model for topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2022 ; 65 1-18.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-021-03148-y
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALONSO, Diego Hayashi e ROMERO SAENZ, Juan Sergio e SILVA, Emílio Carlos Nelli. Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, v. 62, n. 1, p. 299–321, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00158-020-02499-2. Acesso em: 05 dez. 2025.
    • APA

      Alonso, D. H., Romero Saenz, J. S., & Silva, E. C. N. (2020). Non-newtonian laminar 2D swirl flow design by the topology optimization method. Structural and Multidisciplinary Optimization, 62( 1), 299–321. doi:10.1007/s00158-020-02499-2
    • NLM

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
    • Vancouver

      Alonso DH, Romero Saenz JS, Silva ECN. Non-newtonian laminar 2D swirl flow design by the topology optimization method [Internet]. Structural and Multidisciplinary Optimization. 2020 ; 62( 1): 299–321.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-020-02499-2
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: ROTOR, TURBOMOTORES, MÉTODOS TOPOLÓGICOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, L. F. N. et al. Design optimization of laminar flow machine rotors based on the topological derivative concep. Structural and Multidisciplinary Optimization, v. 56, n. 5, p. 1013–1026, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-017-1698-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N., Novotny, A. A., Romero, J. S., & Silva, E. C. N. (2017). Design optimization of laminar flow machine rotors based on the topological derivative concep. Structural and Multidisciplinary Optimization, 56( 5), 1013–1026. doi:10.1007/s00158-017-1698-0
    • NLM

      Sá LFN, Novotny AA, Romero JS, Silva ECN. Design optimization of laminar flow machine rotors based on the topological derivative concep [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 56( 5): 1013–1026.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1698-0
    • Vancouver

      Sá LFN, Novotny AA, Romero JS, Silva ECN. Design optimization of laminar flow machine rotors based on the topological derivative concep [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 56( 5): 1013–1026.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-017-1698-0
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, EQUAÇÕES DE NAVIER-STOKES, VISCOSIDADE DO FLUXO DOS FLUÍDOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO, J. S. Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, v. 55, p. 1711–1732, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1599-7. Acesso em: 05 dez. 2025.
    • APA

      Romero, J. S. (2017). Non-newtonian laminar flow machine rotor design by using topology optimization. Structural and Multidisciplinary Optimization, 55, 1711–1732. doi:10.1007/s00158-016-1599-7
    • NLM

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
    • Vancouver

      Romero JS. Non-newtonian laminar flow machine rotor design by using topology optimization [Internet]. Structural and Multidisciplinary Optimization. 2017 ; 55 1711–1732.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1599-7
  • Source: Structural and Multidisciplinary Optimization. Unidade: EP

    Subjects: TOPOLOGIA, VÓRTICES DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁ, Luís Fernando Nogueira de e AMIGO, Ricardo Cesare Román e SILVA, Emílio Carlos Nelli. Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, v. 54, n. 2, p. 249–264, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00158-016-1399-0. Acesso em: 05 dez. 2025.
    • APA

      Sá, L. F. N. de, Amigo, R. C. R., & Silva, E. C. N. (2016). Topological derivatives applied to fluid flow channel design optimization problems. Structural and Multidisciplinary Optimization, 54( 2), 249–264. doi:10.1007/s00158-016-1399-0
    • NLM

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0
    • Vancouver

      Sá LFN de, Amigo RCR, Silva ECN. Topological derivatives applied to fluid flow channel design optimization problems [Internet]. Structural and Multidisciplinary Optimization. 2016 ; 54( 2): 249–264.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1007/s00158-016-1399-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025