Filtros : "Differential Geometry and its Applications" "Financiamento CNPq" Limpar

Filtros



Limitar por data


  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMENEZ, Miguel Ibieta e TOJEIRO, Ruy. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, v. 81, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101862. Acesso em: 13 nov. 2025.
    • APA

      Jimenez, M. I., & Tojeiro, R. (2022). Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, 81, 1-19. doi:10.1016/j.difgeo.2022.101862
    • NLM

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
    • Vancouver

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA DIFERENCIAL, PSEUDOGRUPOS, GRUPOIDES, ANÁLISE GLOBAL, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRERA, Alejandro e ORTIZ, Cristian. Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, v. 83, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101898. Acesso em: 13 nov. 2025.
    • APA

      Cabrera, A., & Ortiz, C. (2022). Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, 83. doi:10.1016/j.difgeo.2022.101898
    • NLM

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
    • Vancouver

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo e SOTOMAYOR, Jorge. Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, v. 12, n. 3, p. 253-269, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0926-2245(00)00015-2. Acesso em: 13 nov. 2025.
    • APA

      Garcia, R., & Sotomayor, J. (2000). Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, 12( 3), 253-269. doi:10.1016/s0926-2245(00)00015-2
    • NLM

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2
    • Vancouver

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025