Filtros : "Differential Geometry and its Applications" "2021" Limpar

Filtros



Refine with date range


  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e FUSTER, Maria Del Carmen Romero e ZANARDO, Maria Carolina. Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, v. 79, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101816. Acesso em: 14 nov. 2025.
    • APA

      Nabarro, A. C., Fuster, M. D. C. R., & Zanardo, M. C. (2021). Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, 79, 1-19. doi:10.1016/j.difgeo.2021.101816
    • NLM

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
    • Vancouver

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAJCZER, Marcos e JIMENEZ, Miguel Ibieta. Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, v. 75, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101721. Acesso em: 14 nov. 2025.
    • APA

      Dajczer, M., & Jimenez, M. I. (2021). Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, 75, 1-21. doi:10.1016/j.difgeo.2021.101721
    • NLM

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721
    • Vancouver

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025