Filtros : "Differential Geometry and its Applications" "ICMC-SMA" Limpar

Filtros



Refine with date range


  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMENEZ, Miguel Ibieta e TOJEIRO, Ruy. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, v. 81, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101862. Acesso em: 14 nov. 2025.
    • APA

      Jimenez, M. I., & Tojeiro, R. (2022). Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, 81, 1-19. doi:10.1016/j.difgeo.2022.101862
    • NLM

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
    • Vancouver

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e FUSTER, Maria Del Carmen Romero e ZANARDO, Maria Carolina. Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, v. 79, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101816. Acesso em: 14 nov. 2025.
    • APA

      Nabarro, A. C., Fuster, M. D. C. R., & Zanardo, M. C. (2021). Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, 79, 1-19. doi:10.1016/j.difgeo.2021.101816
    • NLM

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
    • Vancouver

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REI FILHO, Carlos Gonçalves do e TOJEIRO, Ruy. Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, v. 61, p. 133-146, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2018.08.002. Acesso em: 14 nov. 2025.
    • APA

      Rei Filho, C. G. do, & Tojeiro, R. (2018). Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, 61, 133-146. doi:10.1016/j.difgeo.2018.08.002
    • NLM

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
    • Vancouver

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025