Filtros : "Differential Geometry and its Applications" "Indexado no MathSciNet" Limpar

Filtros



Limitar por data


  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTAS, Mateus da Silva Rodrigues. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space. Differential Geometry and its Applications, v. 97, p. 1-14, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2024.102201. Acesso em: 13 nov. 2025.
    • APA

      Antas, M. da S. R. (2024). Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space. Differential Geometry and its Applications, 97, 1-14. doi:10.1016/j.difgeo.2024.102201
    • NLM

      Antas M da SR. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space [Internet]. Differential Geometry and its Applications. 2024 ; 97 1-14.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2024.102201
    • Vancouver

      Antas M da SR. Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space [Internet]. Differential Geometry and its Applications. 2024 ; 97 1-14.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2024.102201
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMENEZ, Miguel Ibieta e TOJEIRO, Ruy. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, v. 81, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101862. Acesso em: 13 nov. 2025.
    • APA

      Jimenez, M. I., & Tojeiro, R. (2022). Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, 81, 1-19. doi:10.1016/j.difgeo.2022.101862
    • NLM

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
    • Vancouver

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: TEORIA DAS SINGULARIDADES, SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NABARRO, Ana Claudia e FUSTER, Maria Del Carmen Romero e ZANARDO, Maria Carolina. Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, v. 79, p. 1-19, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101816. Acesso em: 13 nov. 2025.
    • APA

      Nabarro, A. C., Fuster, M. D. C. R., & Zanardo, M. C. (2021). Gauss maps on canal hypersurfaces of generic curves in R⁴. Differential Geometry and its Applications, 79, 1-19. doi:10.1016/j.difgeo.2021.101816
    • NLM

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
    • Vancouver

      Nabarro AC, Fuster MDCR, Zanardo MC. Gauss maps on canal hypersurfaces of generic curves in R⁴ [Internet]. Differential Geometry and its Applications. 2021 ; 79 1-19.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101816
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL CLÁSSICA, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAJCZER, Marcos e JIMENEZ, Miguel Ibieta. Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, v. 75, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101721. Acesso em: 13 nov. 2025.
    • APA

      Dajczer, M., & Jimenez, M. I. (2021). Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, 75, 1-21. doi:10.1016/j.difgeo.2021.101721
    • NLM

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721
    • Vancouver

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REI FILHO, Carlos Gonçalves do e TOJEIRO, Ruy. Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, v. 61, p. 133-146, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2018.08.002. Acesso em: 13 nov. 2025.
    • APA

      Rei Filho, C. G. do, & Tojeiro, R. (2018). Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, 61, 133-146. doi:10.1016/j.difgeo.2018.08.002
    • NLM

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
    • Vancouver

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA SIMPLÉTICA, GEOMETRIA GLOBAL, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DRUMMOND, T e JOTZ LEAN, Madeleine e ORTIZ, Cristian. VB-algebroid morphisms and representations up to homotopy. Differential Geometry and its Applications, v. 40, p. 332–357, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2015.03.005. Acesso em: 13 nov. 2025.
    • APA

      Drummond, T., Jotz Lean, M., & Ortiz, C. (2015). VB-algebroid morphisms and representations up to homotopy. Differential Geometry and its Applications, 40, 332–357. doi:10.1016/j.difgeo.2015.03.005
    • NLM

      Drummond T, Jotz Lean M, Ortiz C. VB-algebroid morphisms and representations up to homotopy [Internet]. Differential Geometry and its Applications. 2015 ; 40 332–357.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2015.03.005
    • Vancouver

      Drummond T, Jotz Lean M, Ortiz C. VB-algebroid morphisms and representations up to homotopy [Internet]. Differential Geometry and its Applications. 2015 ; 40 332–357.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2015.03.005
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e BRIQUET, Rafael e TOBEN, Dirk. Progress in the theory of singular Riemannian foliations. Differential Geometry and its Applications, v. 31, n. 2, p. 248-267, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2013.01.004. Acesso em: 13 nov. 2025.
    • APA

      Alexandrino, M. M., Briquet, R., & Toben, D. (2013). Progress in the theory of singular Riemannian foliations. Differential Geometry and its Applications, 31( 2), 248-267. doi:10.1016/j.difgeo.2013.01.004
    • NLM

      Alexandrino MM, Briquet R, Toben D. Progress in the theory of singular Riemannian foliations [Internet]. Differential Geometry and its Applications. 2013 ; 31( 2): 248-267.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2013.01.004
    • Vancouver

      Alexandrino MM, Briquet R, Toben D. Progress in the theory of singular Riemannian foliations [Internet]. Differential Geometry and its Applications. 2013 ; 31( 2): 248-267.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1016/j.difgeo.2013.01.004

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025