Filtros : "DINÂMICA TOPOLÓGICA" "EQUAÇÕES DIFERENCIAIS PARCIAIS" Removido: "Journal of Nonlinear Science" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 27 nov. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIMENTEL, Juliana Fernandes da Silva. Autonomous and non-autonomous unbounded attractors under perturbations. Proceedings of the Royal Society of Edinburgh, v. 149, n. 4, p. 877-903, 2019Tradução . . Disponível em: https://doi.org/10.1017/prm.2018.51. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, A. N. de, & Pimentel, J. F. da S. (2019). Autonomous and non-autonomous unbounded attractors under perturbations. Proceedings of the Royal Society of Edinburgh, 149( 4), 877-903. doi:10.1017/prm.2018.51
    • NLM

      Carvalho AN de, Pimentel JF da S. Autonomous and non-autonomous unbounded attractors under perturbations [Internet]. Proceedings of the Royal Society of Edinburgh. 2019 ; 149( 4): 877-903.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/prm.2018.51
    • Vancouver

      Carvalho AN de, Pimentel JF da S. Autonomous and non-autonomous unbounded attractors under perturbations [Internet]. Proceedings of the Royal Society of Edinburgh. 2019 ; 149( 4): 877-903.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/prm.2018.51
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e MONTEIRO, Rodrigo Nunes e PEREIRA, Ana Cláudia. Pullback dynamics of non-autonomous Timoshenko systems. Applied Mathematics and Optimization, v. 80, n. 2, p. 391-413, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00245-017-9469-2. Acesso em: 27 nov. 2025.
    • APA

      Ma, T. F., Monteiro, R. N., & Pereira, A. C. (2019). Pullback dynamics of non-autonomous Timoshenko systems. Applied Mathematics and Optimization, 80( 2), 391-413. doi:10.1007/s00245-017-9469-2
    • NLM

      Ma TF, Monteiro RN, Pereira AC. Pullback dynamics of non-autonomous Timoshenko systems [Internet]. Applied Mathematics and Optimization. 2019 ; 80( 2): 391-413.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00245-017-9469-2
    • Vancouver

      Ma TF, Monteiro RN, Pereira AC. Pullback dynamics of non-autonomous Timoshenko systems [Internet]. Applied Mathematics and Optimization. 2019 ; 80( 2): 391-413.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00245-017-9469-2
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CONTI, M et al. Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, v. 264, n. 7, p. 4235-4259, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2017.12.010. Acesso em: 27 nov. 2025.
    • APA

      Conti, M., Ma, T. F., Marchini, E. M., & Huertas, P. N. S. (2018). Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, 264( 7), 4235-4259. doi:10.1016/j.jde.2017.12.010
    • NLM

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
    • Vancouver

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: EQUAÇÕES INTEGRAIS, EQUAÇÕES INTEGRO-DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, DINÂMICA TOPOLÓGICA, ESTABILIDADE DE LIAPUNOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio da e PEREIRA, Antônio Luiz. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, v. 51, n. 2, p. 583-598, 2018Tradução . . Disponível em: https://doi.org/10.12775/tmna.2018.004. Acesso em: 27 nov. 2025.
    • APA

      Silva, S. H. da, & Pereira, A. L. (2018). A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain. Topological Methods in Nonlinear Analysis, 51( 2), 583-598. doi:10.12775/tmna.2018.004
    • NLM

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 27 ] Available from: https://doi.org/10.12775/tmna.2018.004
    • Vancouver

      Silva SH da, Pereira AL. A gradient flow generated by a nonlocal model of a neutral field in an unbounded domain [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 2): 583-598.[citado 2025 nov. 27 ] Available from: https://doi.org/10.12775/tmna.2018.004
  • Source: Discrete and Continuous Dynamical Systems - Series B. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS PARCIAIS, DINÂMICA TOPOLÓGICA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - Series B, v. No 2016, n. 9, p. 2949-2967, 2016Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2016081. Acesso em: 27 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Costa, H. B. da, & Langa, J. A. (2016). Equi-attraction and continuity of attractors for skew-product semiflows. Discrete and Continuous Dynamical Systems - Series B, No 2016( 9), 2949-2967. doi:10.3934/dcdsb.2016081
    • NLM

      Caraballo T, Carvalho AN de, Costa HB da, Langa JA. Equi-attraction and continuity of attractors for skew-product semiflows [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2016 ; No 2016( 9): 2949-2967.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/dcdsb.2016081
    • Vancouver

      Caraballo T, Carvalho AN de, Costa HB da, Langa JA. Equi-attraction and continuity of attractors for skew-product semiflows [Internet]. Discrete and Continuous Dynamical Systems - Series B. 2016 ; No 2016( 9): 2949-2967.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/dcdsb.2016081
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, K. P. Conley index and tubular neighborhoods II. Journal of Differential Equations, v. 260, n. 5, p. 4016-4050, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2015.11.001. Acesso em: 27 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2016). Conley index and tubular neighborhoods II. Journal of Differential Equations, 260( 5), 4016-4050. doi:10.1016/j.jde.2015.11.001
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index and tubular neighborhoods II [Internet]. Journal of Differential Equations. 2016 ; 260( 5): 4016-4050.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2015.11.001
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index and tubular neighborhoods II [Internet]. Journal of Differential Equations. 2016 ; 260( 5): 4016-4050.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2015.11.001
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Severino Horácio da e PEREIRA, Antônio Luiz. Asymptotic behavior for a nonlocal model of neural fields. São Paulo Journal of Mathematical Sciences, v. 9, n. 2, p. 181-194, 2015Tradução . . Disponível em: https://doi.org/10.1007/s40863-015-0018-0. Acesso em: 27 nov. 2025.
    • APA

      Silva, S. H. da, & Pereira, A. L. (2015). Asymptotic behavior for a nonlocal model of neural fields. São Paulo Journal of Mathematical Sciences, 9( 2), 181-194. doi:10.1007/s40863-015-0018-0
    • NLM

      Silva SH da, Pereira AL. Asymptotic behavior for a nonlocal model of neural fields [Internet]. São Paulo Journal of Mathematical Sciences. 2015 ; 9( 2): 181-194.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40863-015-0018-0
    • Vancouver

      Silva SH da, Pereira AL. Asymptotic behavior for a nonlocal model of neural fields [Internet]. São Paulo Journal of Mathematical Sciences. 2015 ; 9( 2): 181-194.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40863-015-0018-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025