Filtros : "Journal of Mathematical Analysis and Applications" "2015" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: GEOMETRIA SIMPLÉTICA, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAIZER, Marcos e DOMITRZ, Wojciech e RIOS, Pedro Paulo de Magalhães. Even dimensional improper affine spheres. Journal of Mathematical Analysis and Applications, v. 421, n. ja 2015, p. 1803-1826, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.08.028. Acesso em: 16 nov. 2025.
    • APA

      Craizer, M., Domitrz, W., & Rios, P. P. de M. (2015). Even dimensional improper affine spheres. Journal of Mathematical Analysis and Applications, 421( ja 2015), 1803-1826. doi:10.1016/j.jmaa.2014.08.028
    • NLM

      Craizer M, Domitrz W, Rios PP de M. Even dimensional improper affine spheres [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 421( ja 2015): 1803-1826.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2014.08.028
    • Vancouver

      Craizer M, Domitrz W, Rios PP de M. Even dimensional improper affine spheres [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 421( ja 2015): 1803-1826.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2014.08.028
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson A e SOARES, Sérgio Henrique Monari. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. Journal of Mathematical Analysis and Applications, v. 428, n. 2, p. 1035-1053, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.03.030. Acesso em: 16 nov. 2025.
    • APA

      Santos, J. A., & Soares, S. H. M. (2015). Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. Journal of Mathematical Analysis and Applications, 428( 2), 1035-1053. doi:10.1016/j.jmaa.2015.03.030
    • NLM

      Santos JA, Soares SHM. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 2): 1035-1053.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.030
    • Vancouver

      Santos JA, Soares SHM. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 2): 1035-1053.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.030
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITURRIAGA, Leonelo e MOREIRA DOS SANTOS, Ederson e UBILLA, Pedro. Local minimizers in spaces of symmetric functions and applications. Journal of Mathematical Analysis and Applications, v. 429, n. 1, p. 27–56, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.03.084. Acesso em: 16 nov. 2025.
    • APA

      Iturriaga, L., Moreira dos Santos, E., & Ubilla, P. (2015). Local minimizers in spaces of symmetric functions and applications. Journal of Mathematical Analysis and Applications, 429( 1), 27–56. doi:10.1016/j.jmaa.2015.03.084
    • NLM

      Iturriaga L, Moreira dos Santos E, Ubilla P. Local minimizers in spaces of symmetric functions and applications [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 1): 27–56.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.084
    • Vancouver

      Iturriaga L, Moreira dos Santos E, Ubilla P. Local minimizers in spaces of symmetric functions and applications [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 1): 27–56.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.084
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e VITÓRIO, Feliciano. Minimal immersions of Riemannian manifolds in products of space forms. Journal of Mathematical Analysis and Applications, v. 424, n. 1, p. 260-268, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.11.013. Acesso em: 16 nov. 2025.
    • APA

      Manfio, F., & Vitório, F. (2015). Minimal immersions of Riemannian manifolds in products of space forms. Journal of Mathematical Analysis and Applications, 424( 1), 260-268. doi:10.1016/j.jmaa.2014.11.013
    • NLM

      Manfio F, Vitório F. Minimal immersions of Riemannian manifolds in products of space forms [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 424( 1): 260-268.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2014.11.013
    • Vancouver

      Manfio F, Vitório F. Minimal immersions of Riemannian manifolds in products of space forms [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 424( 1): 260-268.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2014.11.013
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL, Fabiano Carlos e GALEGO, Eloi Medina e RINCÓN VILLAMIZAR, Michael Alexander. Optimal extensions of the Banach–Stone theorem. Journal of Mathematical Analysis and Applications, v. 430, n. 1, p. 193–204, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.04.060. Acesso em: 16 nov. 2025.
    • APA

      Cidral, F. C., Galego, E. M., & Rincón Villamizar, M. A. (2015). Optimal extensions of the Banach–Stone theorem. Journal of Mathematical Analysis and Applications, 430( 1), 193–204. doi:10.1016/j.jmaa.2015.04.060
    • NLM

      Cidral FC, Galego EM, Rincón Villamizar MA. Optimal extensions of the Banach–Stone theorem [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 430( 1): 193–204.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.060
    • Vancouver

      Cidral FC, Galego EM, Rincón Villamizar MA. Optimal extensions of the Banach–Stone theorem [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 430( 1): 193–204.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.060
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e ZAHN, Maurício. On the isomorphic classification of C(K, X) spaces. Journal of Mathematical Analysis and Applications, v. 01 No 2015, n. 1, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.05.080. Acesso em: 16 nov. 2025.
    • APA

      Galego, E. M., & Zahn, M. (2015). On the isomorphic classification of C(K, X) spaces. Journal of Mathematical Analysis and Applications, 01 No 2015( 1). doi:10.1016/j.jmaa.2015.05.080
    • NLM

      Galego EM, Zahn M. On the isomorphic classification of C(K, X) spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 01 No 2015( 1):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.05.080
    • Vancouver

      Galego EM, Zahn M. On the isomorphic classification of C(K, X) spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 01 No 2015( 1):[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.05.080
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Claudia e TAUSK, Daniel Victor. On the c0-extension property for compact lines. Journal of Mathematical Analysis and Applications, v. 428, n. 1, p. 184-193, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.03.022. Acesso em: 16 nov. 2025.
    • APA

      Correa, C., & Tausk, D. V. (2015). On the c0-extension property for compact lines. Journal of Mathematical Analysis and Applications, 428( 1), 184-193. doi:10.1016/j.jmaa.2015.03.022
    • NLM

      Correa C, Tausk DV. On the c0-extension property for compact lines [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 1): 184-193.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.022
    • Vancouver

      Correa C, Tausk DV. On the c0-extension property for compact lines [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 1): 184-193.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.022
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOEPFNER, G e HOUNIE, J e PICON, Tiago Henrique. Div–curl type estimates for elliptic systems of complex vector fields. Journal of Mathematical Analysis and Applications, v. 429, n. 2, p. 774-799, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.04.054. Acesso em: 16 nov. 2025.
    • APA

      Hoepfner, G., Hounie, J., & Picon, T. H. (2015). Div–curl type estimates for elliptic systems of complex vector fields. Journal of Mathematical Analysis and Applications, 429( 2), 774-799. doi:10.1016/j.jmaa.2015.04.054
    • NLM

      Hoepfner G, Hounie J, Picon TH. Div–curl type estimates for elliptic systems of complex vector fields [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 2): 774-799.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.054
    • Vancouver

      Hoepfner G, Hounie J, Picon TH. Div–curl type estimates for elliptic systems of complex vector fields [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 2): 774-799.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.054
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e FITRIANA, Laila e HIROSAWA, Fumihiko. On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions. Journal of Mathematical Analysis and Applications, v. 432, n. 2, p. 654-677, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.06.051. Acesso em: 16 nov. 2025.
    • APA

      Ebert, M. R., Fitriana, L., & Hirosawa, F. (2015). On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions. Journal of Mathematical Analysis and Applications, 432( 2), 654-677. doi:10.1016/j.jmaa.2015.06.051
    • NLM

      Ebert MR, Fitriana L, Hirosawa F. On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 432( 2): 654-677.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.06.051
    • Vancouver

      Ebert MR, Fitriana L, Hirosawa F. On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 432( 2): 654-677.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2015.06.051
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, ANÁLISE NUMÉRICA, ESCOAMENTO MULTIFÁSICO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MCKEE, S. e CUMINATO, José Alberto. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, v. 423, n. 1, p. 243-252, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2014.09.067. Acesso em: 16 nov. 2025.
    • APA

      McKee, S., & Cuminato, J. A. (2015). Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, 423( 1), 243-252. doi:10.1016/j.jmaa.2014.09.067
    • NLM

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2014.09.067
    • Vancouver

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2014.09.067

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025