Filtros : "Journal of Mathematical Analysis and Applications" "PEREIRA, MARCONE CORRÊA" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PAŽANIN, Igor e PEREIRA, Marcone Corrêa. On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary. Journal of Mathematical Analysis and Applications, v. 1, n. artigo 127062, p. 1-21, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127062. Acesso em: 16 nov. 2025.
    • APA

      Nakasato, J. C., Pažanin, I., & Pereira, M. C. (2023). On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary. Journal of Mathematical Analysis and Applications, 1( artigo 127062), 1-21. doi:10.1016/j.jmaa.2023.127062
    • NLM

      Nakasato JC, Pažanin I, Pereira MC. On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 1( artigo 127062): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127062
    • Vancouver

      Nakasato JC, Pažanin I, Pereira MC. On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; 1( artigo 127062): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127062
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES INTEGRAIS LINEARES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e SASTRE-GOMEZ, Silvia. Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124729. Acesso em: 16 nov. 2025.
    • APA

      Pereira, M. C., & Sastre-Gomez, S. (2021). Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, 495( 2), 1-21. doi:10.1016/j.jmaa.2020.124729
    • NLM

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
    • Vancouver

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes e PEREIRA, Marcone Corrêa. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. 379-402, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2018.05.015. Acesso em: 16 nov. 2025.
    • APA

      Lopes, P. T. P., & Pereira, M. C. (2018). Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, 465( 1), 379-402. doi:10.1016/j.jmaa.2018.05.015
    • NLM

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
    • Vancouver

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Saulo Rabello Maciel de e PEREIRA, Marcone Corrêa. Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary. Journal of Mathematical Analysis and Applications, v. 441, n. 1, p. 375-392, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.04.011. Acesso em: 16 nov. 2025.
    • APA

      Barros, S. R. M. de, & Pereira, M. C. (2016). Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary. Journal of Mathematical Analysis and Applications, 441( 1), 375-392. doi:10.1016/j.jmaa.2016.04.011
    • NLM

      Barros SRM de, Pereira MC. Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 441( 1): 375-392.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.04.011
    • Vancouver

      Barros SRM de, Pereira MC. Semilinear elliptic equations in thin domains with reaction terms concentrating on boundary [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 441( 1): 375-392.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2016.04.011
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: EACH

    Assuntos: FUNÇÕES ESPECIAIS, EQUAÇÕES DIFERENCIAIS, OSCILADORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e PEREIRA, Marcone Corrêa. The Neumann problem in thin domains with very highly oscillatory boundaries. Journal of Mathematical Analysis and Applications, v. 404, n. 1, p. 86\2013104, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2013.02.061. Acesso em: 16 nov. 2025.
    • APA

      Arrieta, J. M., & Pereira, M. C. (2013). The Neumann problem in thin domains with very highly oscillatory boundaries. Journal of Mathematical Analysis and Applications, 404( 1), 86\2013104. doi:10.1016/j.jmaa.2013.02.061
    • NLM

      Arrieta JM, Pereira MC. The Neumann problem in thin domains with very highly oscillatory boundaries [Internet]. Journal of Mathematical Analysis and Applications. 2013 ; 404( 1): 86\2013104.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2013.02.061
    • Vancouver

      Arrieta JM, Pereira MC. The Neumann problem in thin domains with very highly oscillatory boundaries [Internet]. Journal of Mathematical Analysis and Applications. 2013 ; 404( 1): 86\2013104.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2013.02.061

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025