Filtros : "Procedia Computer Science" "REDES NEURAIS" Limpar

Filtros



Refine with date range


  • Source: Procedia Computer Science. Unidade: EP

    Subjects: REDES NEURAIS, APRENDIZAGEM PROFUNDA, CONSUMO DE ENERGIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUKASE, Vinicius Yuiti et al. One period to rule them all: identifying critical learning periods in deep networks. Procedia Computer Science, v. 264, p. 270-279, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.procs.2025.07.138. Acesso em: 11 nov. 2025.
    • APA

      Fukase, V. Y., Gama, H., Bueno, B., Libanio, L., Reali Costa, A. H., & Correia, A. J. L. (2025). One period to rule them all: identifying critical learning periods in deep networks. Procedia Computer Science, 264, 270-279. doi:10.1016/j.procs.2025.07.138
    • NLM

      Fukase VY, Gama H, Bueno B, Libanio L, Reali Costa AH, Correia AJL. One period to rule them all: identifying critical learning periods in deep networks [Internet]. Procedia Computer Science. 2025 ; 264 270-279.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.procs.2025.07.138
    • Vancouver

      Fukase VY, Gama H, Bueno B, Libanio L, Reali Costa AH, Correia AJL. One period to rule them all: identifying critical learning periods in deep networks [Internet]. Procedia Computer Science. 2025 ; 264 270-279.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.procs.2025.07.138
  • Source: Procedia Computer Science. Unidades: EACH, FEA

    Assunto: REDES NEURAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINOCHET, Luis Hernan Contreras et al. Predicting the intention to use the investment aggregate functionality in the context of open banking using the artificial neural network approach. Procedia Computer Science, v. 221, p. 733-740, 2023Tradução . . Disponível em: http://dx.doi.org/10.1016/j.procs.2023.08.045. Acesso em: 11 nov. 2025.
    • APA

      Pinochet, L. H. C., Bastos, D. C. M., Pardim, V. I., Sun, V., & Santos, M. dos. (2023). Predicting the intention to use the investment aggregate functionality in the context of open banking using the artificial neural network approach. Procedia Computer Science, 221, 733-740. doi:10.1016/j.procs.2023.08.045
    • NLM

      Pinochet LHC, Bastos DCM, Pardim VI, Sun V, Santos M dos. Predicting the intention to use the investment aggregate functionality in the context of open banking using the artificial neural network approach [Internet]. Procedia Computer Science. 2023 ; 221 733-740.[citado 2025 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.procs.2023.08.045
    • Vancouver

      Pinochet LHC, Bastos DCM, Pardim VI, Sun V, Santos M dos. Predicting the intention to use the investment aggregate functionality in the context of open banking using the artificial neural network approach [Internet]. Procedia Computer Science. 2023 ; 221 733-740.[citado 2025 nov. 11 ] Available from: http://dx.doi.org/10.1016/j.procs.2023.08.045
  • Source: Procedia Computer Science. Unidade: EP

    Subjects: SISTEMAS DINÂMICOS, REDES NEURAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Guilherme Barbosa de e HIRAKAWA, André Riyuiti e MARTINI, José Sidnei Colombo. Adaptive traffic signal control based on bio-neural network. Procedia Computer Science, v. 109, p. 1182-1187, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.procs.2017.05.394. Acesso em: 11 nov. 2025.
    • APA

      Castro, G. B. de, Hirakawa, A. R., & Martini, J. S. C. (2017). Adaptive traffic signal control based on bio-neural network. Procedia Computer Science, 109, 1182-1187. doi:10.1016/j.procs.2017.05.394
    • NLM

      Castro GB de, Hirakawa AR, Martini JSC. Adaptive traffic signal control based on bio-neural network [Internet]. Procedia Computer Science. 2017 ; 109 1182-1187.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.procs.2017.05.394
    • Vancouver

      Castro GB de, Hirakawa AR, Martini JSC. Adaptive traffic signal control based on bio-neural network [Internet]. Procedia Computer Science. 2017 ; 109 1182-1187.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.procs.2017.05.394

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025