Filtros : "Neural Computing and Applications" "EESC" Limpar

Filtros



Refine with date range


  • Source: Neural Computing and Applications. Unidades: EESC, ICMC

    Subjects: SISTEMAS DISTRIBUÍDOS, PROGRAMAÇÃO CONCORRENTE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FURQUIM, Gustavo et al. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, v. 27, p. 1129-1141, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1930-z. Acesso em: 13 nov. 2025.
    • APA

      Furquim, G., Pessin, G., Faiçal, B. S., Mendiondo, E. M., & Ueyama, J. (2016). Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil. Neural Computing and Applications, 27, 1129-1141. doi:10.1007/s00521-015-1930-z
    • NLM

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1007/s00521-015-1930-z
    • Vancouver

      Furquim G, Pessin G, Faiçal BS, Mendiondo EM, Ueyama J. Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory: a case study involving a real wireless sensor network deployment in Brazil [Internet]. Neural Computing and Applications. 2016 ; 27 1129-1141.[citado 2025 nov. 13 ] Available from: https://doi.org/10.1007/s00521-015-1930-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025