Filtros : "Neural Computing and Applications" "Indexado no Inspec" Limpar

Filtros



Refine with date range


  • Source: Neural Computing and Applications. Unidade: ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS), MERCADO FINANCEIRO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS FILHO, Ivan José dos et al. How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations. Neural Computing and Applications, v. 37, n. Ja 2025, p. 1307-1319, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00521-024-10418-5. Acesso em: 14 nov. 2025.
    • APA

      Reis Filho, I. J. dos, Gôlo, M. P. S., Marcacini, R. M., & Rezende, S. O. (2025). How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations. Neural Computing and Applications, 37( Ja 2025), 1307-1319. doi:10.1007/s00521-024-10418-5
    • NLM

      Reis Filho IJ dos, Gôlo MPS, Marcacini RM, Rezende SO. How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations [Internet]. Neural Computing and Applications. 2025 ; 37( Ja 2025): 1307-1319.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00521-024-10418-5
    • Vancouver

      Reis Filho IJ dos, Gôlo MPS, Marcacini RM, Rezende SO. How do financial time series enhance the detection of news significance in market movements?: A study using graph neural networks with heterogeneous representations [Internet]. Neural Computing and Applications. 2025 ; 37( Ja 2025): 1307-1319.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00521-024-10418-5
  • Source: Neural Computing and Applications. Unidade: ICMC

    Subjects: RECONHECIMENTO DE IMAGEM, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RESENDE, Damares Crystina Oliveira de e PONTI, Moacir Antonelli. Robust image features for classification and zero-shot tasks by merging visual and semantic attributes. Neural Computing and Applications, v. 34, n. 6, p. 4459-4471, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00521-021-06601-7. Acesso em: 14 nov. 2025.
    • APA

      Resende, D. C. O. de, & Ponti, M. A. (2022). Robust image features for classification and zero-shot tasks by merging visual and semantic attributes. Neural Computing and Applications, 34( 6), 4459-4471. doi:10.1007/s00521-021-06601-7
    • NLM

      Resende DCO de, Ponti MA. Robust image features for classification and zero-shot tasks by merging visual and semantic attributes [Internet]. Neural Computing and Applications. 2022 ; 34( 6): 4459-4471.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00521-021-06601-7
    • Vancouver

      Resende DCO de, Ponti MA. Robust image features for classification and zero-shot tasks by merging visual and semantic attributes [Internet]. Neural Computing and Applications. 2022 ; 34( 6): 4459-4471.[citado 2025 nov. 14 ] Available from: https://doi.org/10.1007/s00521-021-06601-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025