Filtros : "Journal of Chemical Information and Modeling" "Quiles, Marcos Gonçalves" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Chemical Information and Modeling. Unidades: IQSC, FFCLRP

    Assuntos: BIOENGENHARIA, BIOTECNOLOGIA, BIOLOGIA, MATERIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRATI, Ronaldo C. et al. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, v. 64, n. 4, p. 1107–1111, 2024Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.3c02014. Acesso em: 17 nov. 2025.
    • APA

      Prati, R. C., Rodrigues, B. S. M., Aragão, I., Silva, T. A. S. da, Quiles, M. G., & Silva, J. L. F. da. (2024). The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling. Journal of Chemical Information and Modeling, 64( 4), 1107–1111. doi:10.1021/acs.jcim.3c02014
    • NLM

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
    • Vancouver

      Prati RC, Rodrigues BSM, Aragão I, Silva TAS da, Quiles MG, Silva JLF da. The Impact of Interdisciplinary, Gender and Geographic Distributions on the Citation Patterns of the Journal of Chemical Information and Modeling [Internet]. Journal of Chemical Information and Modeling. 2024 ;64( 4): 1107–1111.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.3c02014
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: ENERGIA, MOLÉCULA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Andre F e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, v. 62, p. 817−828, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c01573. Acesso em: 17 nov. 2025.
    • APA

      Oliveira, A. F., Silva, J. L. F. da, & Quiles, M. G. (2022). Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder. Journal of Chemical Information and Modeling, 62, 817−828. doi:10.1021/acs.jcim.1c01573
    • NLM

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
    • Vancouver

      Oliveira AF, Silva JLF da, Quiles MG. Molecular Property Prediction and Molecular Design Using a Supervised Grammar Variational Autoencoder [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62 817−828.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.1c01573
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: MODELAGEM MOLECULAR, MOLÉCULA, QUÍMICA TEÓRICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PINHEIRO, Gabriel A. e SILVA, Juarez Lopes Ferreira da e QUILES, Marcos Gonçalves. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, v. 62, n. 17, p. 3948–3960, 2022Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.2c00521. Acesso em: 17 nov. 2025.
    • APA

      Pinheiro, G. A., Silva, J. L. F. da, & Quiles, M. G. (2022). SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning. Journal of Chemical Information and Modeling, 62( 17), 3948–3960. doi:10.1021/acs.jcim.2c00521
    • NLM

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
    • Vancouver

      Pinheiro GA, Silva JLF da, Quiles MG. SMICLR: Contrastive Learning on Multiple Molecular Representations for Semisupervised and Unsupervised Representation Learning [Internet]. Journal of Chemical Information and Modeling. 2022 ; 62( 17): 3948–3960.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.2c00521
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, MINERAÇÃO DE DADOS, FRAMEWORKS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUCELINI, Johnatan et al. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, v. 61, p. 1125-1135, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01267. Acesso em: 17 nov. 2025.
    • APA

      Mucelini, J., Quiles, M. G., Prati, R. C., & Silva, J. L. F. da. (2021). Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, 61, 1125-1135. doi:10.1021/acs.jcim.0c01267
    • NLM

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
    • Vancouver

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assunto: CLUSTERS

    PrivadoAcesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Krys Elly de Araújo et al. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of Chemical Information and Modeling, v. 60, p. 537-545, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.9b00792. Acesso em: 17 nov. 2025.
    • APA

      Batista, K. E. de A., Restrepo, V. k, Soares, M. D., Quiles, M. G., Piotrowski, M. J., & Silva, J. L. F. da. (2020). Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of Chemical Information and Modeling, 60, 537-545. doi:10.1021/acs.jcim.9b00792
    • NLM

      Batista KE de A, Restrepo V k, Soares MD, Quiles MG, Piotrowski MJ, Silva JLF da. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60 537-545.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00792
    • Vancouver

      Batista KE de A, Restrepo V k, Soares MD, Quiles MG, Piotrowski MJ, Silva JLF da. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters [Internet]. Journal of Chemical Information and Modeling. 2020 ; 60 537-545.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1021/acs.jcim.9b00792

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025