Filtros : "Discrete and Continuous Dynamical Systems" "2010" Limpar

Filtros



Refine with date range


  • Source: Discrete and Continuous Dynamical Systems. Unidades: ICMC, FFCLRP

    Assunto: MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIDALON, Carlos Teobaldo Gutiérrez et al. Transitive circle exchange transformations with flips. Discrete and Continuous Dynamical Systems, v. 26, n. Ja 2010, p. 251-263, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.26.251. Acesso em: 14 nov. 2025.
    • APA

      Vidalon, C. T. G., Lloyd, S., Medvedev, V., Pires, B. F., & Zhuzhoma, E. (2010). Transitive circle exchange transformations with flips. Discrete and Continuous Dynamical Systems, 26( Ja 2010), 251-263. doi:10.3934/dcds.2010.26.251
    • NLM

      Vidalon CTG, Lloyd S, Medvedev V, Pires BF, Zhuzhoma E. Transitive circle exchange transformations with flips [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( Ja 2010): 251-263.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.26.251
    • Vancouver

      Vidalon CTG, Lloyd S, Medvedev V, Pires BF, Zhuzhoma E. Transitive circle exchange transformations with flips [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( Ja 2010): 251-263.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.26.251
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assunto: TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e TAL, Fábio Armando. Support of maximizing measures for typical C-O dynamics on compact manifolds. Discrete and Continuous Dynamical Systems, v. 26, n. 3, p. 795-804, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.26.795. Acesso em: 14 nov. 2025.
    • APA

      Addas-Zanata, S., & Tal, F. A. (2010). Support of maximizing measures for typical C-O dynamics on compact manifolds. Discrete and Continuous Dynamical Systems, 26( 3), 795-804. doi:10.3934/dcds.2010.26.795
    • NLM

      Addas-Zanata S, Tal FA. Support of maximizing measures for typical C-O dynamics on compact manifolds [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( 3): 795-804.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.26.795
    • Vancouver

      Addas-Zanata S, Tal FA. Support of maximizing measures for typical C-O dynamics on compact manifolds [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( 3): 795-804.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.26.795
  • Source: Discrete and Continuous Dynamical Systems. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, TEORIA DA BIFURCAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIDALON, Carlos Teobaldo Gutiérrez e GUÍÑEZ, Víctor e CASTAÑEDA, Alvaro. Quartic differential forms and transversal nets with singularities. Discrete and Continuous Dynamical Systems, v. 26, n. Ja 2010, p. 225-249, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.26.225. Acesso em: 14 nov. 2025.
    • APA

      Vidalon, C. T. G., Guíñez, V., & Castañeda, A. (2010). Quartic differential forms and transversal nets with singularities. Discrete and Continuous Dynamical Systems, 26( Ja 2010), 225-249. doi:10.3934/dcds.2010.26.225
    • NLM

      Vidalon CTG, Guíñez V, Castañeda A. Quartic differential forms and transversal nets with singularities [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( Ja 2010): 225-249.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.26.225
    • Vancouver

      Vidalon CTG, Guíñez V, Castañeda A. Quartic differential forms and transversal nets with singularities [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 26( Ja 2010): 225-249.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.26.225
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, DIFEOMORFISMOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, André Salles de e HALL, Toby. Decoration invariants for horseshoe braids. Discrete and Continuous Dynamical Systems, v. 27, n. 3, p. 863-906, 2010Tradução . . Disponível em: https://doi.org/10.3934/dcds.2010.27.863. Acesso em: 14 nov. 2025.
    • APA

      Carvalho, A. S. de, & Hall, T. (2010). Decoration invariants for horseshoe braids. Discrete and Continuous Dynamical Systems, 27( 3), 863-906. doi:10.3934/dcds.2010.27.863
    • NLM

      Carvalho AS de, Hall T. Decoration invariants for horseshoe braids [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 27( 3): 863-906.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.27.863
    • Vancouver

      Carvalho AS de, Hall T. Decoration invariants for horseshoe braids [Internet]. Discrete and Continuous Dynamical Systems. 2010 ; 27( 3): 863-906.[citado 2025 nov. 14 ] Available from: https://doi.org/10.3934/dcds.2010.27.863

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025