Filtros : "Differential Geometry and its Applications" "Brasil" Limpar

Filtros



Limitar por data


  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA DIFERENCIAL, PSEUDOGRUPOS, GRUPOIDES, ANÁLISE GLOBAL, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRERA, Alejandro e ORTIZ, Cristian. Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, v. 83, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101898. Acesso em: 15 nov. 2025.
    • APA

      Cabrera, A., & Ortiz, C. (2022). Quotients of multiplicative forms and Poisson reduction. Differential Geometry and its Applications, 83. doi:10.1016/j.difgeo.2022.101898
    • NLM

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
    • Vancouver

      Cabrera A, Ortiz C. Quotients of multiplicative forms and Poisson reduction [Internet]. Differential Geometry and its Applications. 2022 ; 83[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101898
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL CLÁSSICA, SUBVARIEDADES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAJCZER, Marcos e JIMENEZ, Miguel Ibieta. Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, v. 75, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2021.101721. Acesso em: 15 nov. 2025.
    • APA

      Dajczer, M., & Jimenez, M. I. (2021). Conformal infinitesimal variations of submanifolds. Differential Geometry and its Applications, 75, 1-21. doi:10.1016/j.difgeo.2021.101721
    • NLM

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721
    • Vancouver

      Dajczer M, Jimenez MI. Conformal infinitesimal variations of submanifolds [Internet]. Differential Geometry and its Applications. 2021 ; 75 1-21.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2021.101721
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: FOLHEAÇÕES, TOPOLOGIA DIFERENCIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e CAVENAGHI, Leonardo Francisco e GONÇALVES, Icaro. On mean curvature flow of singular Riemannian foliations: noncompact cases. Differential Geometry and its Applications, v. 72, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2020.101664. Acesso em: 15 nov. 2025.
    • APA

      Alexandrino, M. M., Cavenaghi, L. F., & Gonçalves, I. (2020). On mean curvature flow of singular Riemannian foliations: noncompact cases. Differential Geometry and its Applications, 72. doi:10.1016/j.difgeo.2020.101664
    • NLM

      Alexandrino MM, Cavenaghi LF, Gonçalves I. On mean curvature flow of singular Riemannian foliations: noncompact cases [Internet]. Differential Geometry and its Applications. 2020 ; 72[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2020.101664
    • Vancouver

      Alexandrino MM, Cavenaghi LF, Gonçalves I. On mean curvature flow of singular Riemannian foliations: noncompact cases [Internet]. Differential Geometry and its Applications. 2020 ; 72[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2020.101664
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: ESPAÇOS DE FINSLER, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e ALVES, Benigno Oliveira e DEHKORDI, Hengameh R. On Finsler transnormal functions. Differential Geometry and its Applications, v. 65, p. 93-107, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2019.03.010. Acesso em: 15 nov. 2025.
    • APA

      Alexandrino, M. M., Alves, B. O., & Dehkordi, H. R. (2019). On Finsler transnormal functions. Differential Geometry and its Applications, 65, 93-107. doi:10.1016/j.difgeo.2019.03.010
    • NLM

      Alexandrino MM, Alves BO, Dehkordi HR. On Finsler transnormal functions [Internet]. Differential Geometry and its Applications. 2019 ; 65 93-107.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2019.03.010
    • Vancouver

      Alexandrino MM, Alves BO, Dehkordi HR. On Finsler transnormal functions [Internet]. Differential Geometry and its Applications. 2019 ; 65 93-107.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2019.03.010
  • Fonte: Differential Geometry and its Applications. Unidade: ICMC

    Assuntos: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REI FILHO, Carlos Gonçalves do e TOJEIRO, Ruy. Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, v. 61, p. 133-146, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2018.08.002. Acesso em: 15 nov. 2025.
    • APA

      Rei Filho, C. G. do, & Tojeiro, R. (2018). Conformally flat hypersurfaces with constant scalar curvature. Differential Geometry and its Applications, 61, 133-146. doi:10.1016/j.difgeo.2018.08.002
    • NLM

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
    • Vancouver

      Rei Filho CG do, Tojeiro R. Conformally flat hypersurfaces with constant scalar curvature [Internet]. Differential Geometry and its Applications. 2018 ; 61 133-146.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2018.08.002
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assuntos: GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e YEPES, Sandra Maria Zapata. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry. Differential Geometry and its Applications, v. 31, n. 6, p. 775-807, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2013.09.004. Acesso em: 15 nov. 2025.
    • APA

      Forger, F. M., & Yepes, S. M. Z. (2013). Lagrangian distributions and connections in multisymplectic and polysymplectic geometry. Differential Geometry and its Applications, 31( 6), 775-807. doi:10.1016/j.difgeo.2013.09.004
    • NLM

      Forger FM, Yepes SMZ. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry [Internet]. Differential Geometry and its Applications. 2013 ; 31( 6): 775-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2013.09.004
    • Vancouver

      Forger FM, Yepes SMZ. Lagrangian distributions and connections in multisymplectic and polysymplectic geometry [Internet]. Differential Geometry and its Applications. 2013 ; 31( 6): 775-807.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2013.09.004
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMARGO, Fernanda Ester Camillo e CHAVES, Rosa Maria dos Santos Barreiro e SOUSA JUNIOR, L. A. M. Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space. Differential Geometry and its Applications, v. 26, n. 6, p. 592-599, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2008.04.020. Acesso em: 15 nov. 2025.
    • APA

      Camargo, F. E. C., Chaves, R. M. dos S. B., & Sousa Junior, L. A. M. (2008). Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space. Differential Geometry and its Applications, 26( 6), 592-599. doi:10.1016/j.difgeo.2008.04.020
    • NLM

      Camargo FEC, Chaves RM dos SB, Sousa Junior LAM. Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space [Internet]. Differential Geometry and its Applications. 2008 ; 26( 6): 592-599.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2008.04.020
    • Vancouver

      Camargo FEC, Chaves RM dos SB, Sousa Junior LAM. Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space [Internet]. Differential Geometry and its Applications. 2008 ; 26( 6): 592-599.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2008.04.020
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: IMERSÃO (TOPOLOGIA)

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTES, Rodrigo Ristow e VERDERESI, José Antonio. Contact angle for immersed surfaces in 'S POT. 2n+1'. Differential Geometry and its Applications, v. 25, n. 1, p. 92-100, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2006.05.004. Acesso em: 15 nov. 2025.
    • APA

      Montes, R. R., & Verderesi, J. A. (2007). Contact angle for immersed surfaces in 'S POT. 2n+1'. Differential Geometry and its Applications, 25( 1), 92-100. doi:10.1016/j.difgeo.2006.05.004
    • NLM

      Montes RR, Verderesi JA. Contact angle for immersed surfaces in 'S POT. 2n+1' [Internet]. Differential Geometry and its Applications. 2007 ; 25( 1): 92-100.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2006.05.004
    • Vancouver

      Montes RR, Verderesi JA. Contact angle for immersed surfaces in 'S POT. 2n+1' [Internet]. Differential Geometry and its Applications. 2007 ; 25( 1): 92-100.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/j.difgeo.2006.05.004
  • Fonte: Differential Geometry and its Applications. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL CLÁSSICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Ronaldo e SOTOMAYOR, Jorge. Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, v. 12, n. 3, p. 253-269, 2000Tradução . . Disponível em: https://doi.org/10.1016/s0926-2245(00)00015-2. Acesso em: 15 nov. 2025.
    • APA

      Garcia, R., & Sotomayor, J. (2000). Lines of axial curvature on surfaces immersed in R-4. Differential Geometry and its Applications, 12( 3), 253-269. doi:10.1016/s0926-2245(00)00015-2
    • NLM

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2
    • Vancouver

      Garcia R, Sotomayor J. Lines of axial curvature on surfaces immersed in R-4 [Internet]. Differential Geometry and its Applications. 2000 ; 12( 3): 253-269.[citado 2025 nov. 15 ] Available from: https://doi.org/10.1016/s0926-2245(00)00015-2

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025