Filtros : "Computer Methods in Applied Mechanics and Engineering" "Elsevier" Limpar

Filtros



Refine with date range


  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, ROBUSTEZ, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENTO, Murilo Eduardo Casteroba e PROENÇA, Sérgio Persival Baroncini e DUARTE, C. A. Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, v. 394, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2022.114917. Acesso em: 11 nov. 2025.
    • APA

      Bento, M. E. C., Proença, S. P. B., & Duarte, C. A. (2022). Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 394, 1-24. doi:10.1016/j.cma.2022.114917
    • NLM

      Bento MEC, Proença SPB, Duarte CA. Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 394 1-24.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2022.114917
    • Vancouver

      Bento MEC, Proença SPB, Duarte CA. Well-conditioned and optimally convergent second-order Generalized/eXtended FEM formulations for linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 394 1-24.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2022.114917
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: MECÂNICA DA FRATURA, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROSA, Rosicley Júnio Rodrigues e CODA, Humberto Breves e SANCHES, Rodolfo André Kuche. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, v. 392, p. 1-28, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2022.114622. Acesso em: 11 nov. 2025.
    • APA

      Rosa, R. J. R., Coda, H. B., & Sanches, R. A. K. (2022). Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 392, 1-28. doi:10.1016/j.cma.2022.114622
    • NLM

      Rosa RJR, Coda HB, Sanches RAK. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 392 1-28.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2022.114622
    • Vancouver

      Rosa RJR, Coda HB, Sanches RAK. Blended isogeometric-finite element analysis for large displacements linear elastic fracture mechanics [Internet]. Computer Methods in Applied Mechanics and Engineering. 2022 ; 392 1-28.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2022.114622
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Jeferson Wilian Dossa e SANCHES, Rodolfo André Kuche e BARBARULO, Andrea. A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, v. 386, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2021.114102. Acesso em: 11 nov. 2025.
    • APA

      Fernandes, J. W. D., Sanches, R. A. K., & Barbarulo, A. (2021). A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 386, 1-22. doi:10.1016/j.cma.2021.114102
    • NLM

      Fernandes JWD, Sanches RAK, Barbarulo A. A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations [Internet]. Computer Methods in Applied Mechanics and Engineering. 2021 ; 386 1-22.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2021.114102
    • Vancouver

      Fernandes JWD, Sanches RAK, Barbarulo A. A stabilized mixed space–time Proper Generalized Decomposition for the Navier–Stokes equations [Internet]. Computer Methods in Applied Mechanics and Engineering. 2021 ; 386 1-22.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2021.114102
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: DINÂMICA DOS FLUÍDOS COMPUTACIONAL, MÉTODO DOS ELEMENTOS FINITOS, MÉTODOS DE DECOMPOSIÇÃO, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Jeferson Wilian Dossa et al. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework. Computer Methods in Applied Mechanics and Engineering, v. 370, p. 1-30, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2020.113073. Acesso em: 11 nov. 2025.
    • APA

      Fernandes, J. W. D., Barbarulo, A., Dhia, H. B., & Sanches, R. A. K. (2020). A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework. Computer Methods in Applied Mechanics and Engineering, 370, 1-30. doi:10.1016/j.cma.2020.113073
    • NLM

      Fernandes JWD, Barbarulo A, Dhia HB, Sanches RAK. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 370 1-30.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2020.113073
    • Vancouver

      Fernandes JWD, Barbarulo A, Dhia HB, Sanches RAK. A residual-based stabilized finite element formulation for incompressible flow problems in the Arlequin framework [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 370 1-30.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2020.113073
  • Source: Computer Methods in Applied Mechanics and Engineering. Unidade: EESC

    Subjects: TOPOLOGIA, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Gustavo Assis da e BECK, André Teófilo e SIGMUND, Ole. Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. Computer Methods in Applied Mechanics and Engineering, v. 365, p. 1-31, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.cma.2020.112972. Acesso em: 11 nov. 2025.
    • APA

      Silva, G. A. da, Beck, A. T., & Sigmund, O. (2020). Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity. Computer Methods in Applied Mechanics and Engineering, 365, 1-31. doi:10.1016/j.cma.2020.112972
    • NLM

      Silva GA da, Beck AT, Sigmund O. Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 365 1-31.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2020.112972
    • Vancouver

      Silva GA da, Beck AT, Sigmund O. Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity [Internet]. Computer Methods in Applied Mechanics and Engineering. 2020 ; 365 1-31.[citado 2025 nov. 11 ] Available from: https://doi.org/10.1016/j.cma.2020.112972

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025