Filtros : "ESPINOSA, DENISE CROCCE ROMANO" "HIDROMETALURGIA" Removido: "Journal of Materials Research and Technology" Limpar

Filtros



Limitar por data


  • Fonte: Separation and Purification Technology. Unidades: EP, RUSP

    Assuntos: HIDROMETALURGIA, ELETROQUÍMICA, LÍTIO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAYTA ARMAS, Angie Fiorella et al. Membrane-based electrochemical separation: effect of co-ions on Li separation in battery recycling. Separation and Purification Technology, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.seppur.2025.135766. Acesso em: 27 nov. 2025.
    • APA

      Mayta Armas, A. F., Espinosa, D. C. R., Tenório, J. A. S., & Botelho Junior, A. B. (2026). Membrane-based electrochemical separation: effect of co-ions on Li separation in battery recycling. Separation and Purification Technology. doi:10.1016/j.seppur.2025.135766
    • NLM

      Mayta Armas AF, Espinosa DCR, Tenório JAS, Botelho Junior AB. Membrane-based electrochemical separation: effect of co-ions on Li separation in battery recycling [Internet]. Separation and Purification Technology. 2026 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.seppur.2025.135766
    • Vancouver

      Mayta Armas AF, Espinosa DCR, Tenório JAS, Botelho Junior AB. Membrane-based electrochemical separation: effect of co-ions on Li separation in battery recycling [Internet]. Separation and Purification Technology. 2026 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.seppur.2025.135766
  • Fonte: Minerals Engineering. Unidades: EP, RUSP

    Assuntos: HIDROMETALURGIA, TÂNTALO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHACA, Darwin Michell Cheje et al. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes. Minerals Engineering, v. 222, p. 1-19, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.109125. Acesso em: 27 nov. 2025.
    • APA

      Machaca, D. M. C., Carvalho, T. C. de, Tenório, J. A. S., & Espinosa, D. C. R. (2025). Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes. Minerals Engineering, 222, 1-19. doi:10.1016/j.mineng.2024.109125
    • NLM

      Machaca DMC, Carvalho TC de, Tenório JAS, Espinosa DCR. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes [Internet]. Minerals Engineering. 2025 ;222 1-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2024.109125
    • Vancouver

      Machaca DMC, Carvalho TC de, Tenório JAS, Espinosa DCR. Advancements in the extraction of niobium and tantalum: innovative strategies in hydrometallurgical processes [Internet]. Minerals Engineering. 2025 ;222 1-19.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2024.109125
  • Fonte: Journal of Sustainable Mining. Unidade: RUSP

    Assuntos: HIDROMETALURGIA, REJEITOS DE MINERAÇÃO, SULFATO DE CÁLCIO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA , Raquel Húngaro et al. Recovery of magnesium sulfate and calcium sulfate from zinc flotation tailing. Journal of Sustainable Mining, 2025Tradução . . Disponível em: https://doi.org/10.46873/2300-3960.1469. Acesso em: 27 nov. 2025.
    • APA

      Costa , R. H., Vinhal, J. T., Scarazzato, T., & Espinosa, D. C. R. (2025). Recovery of magnesium sulfate and calcium sulfate from zinc flotation tailing. Journal of Sustainable Mining. doi:10.46873/2300-3960.1469
    • NLM

      Costa RH, Vinhal JT, Scarazzato T, Espinosa DCR. Recovery of magnesium sulfate and calcium sulfate from zinc flotation tailing [Internet]. Journal of Sustainable Mining. 2025 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.46873/2300-3960.1469
    • Vancouver

      Costa RH, Vinhal JT, Scarazzato T, Espinosa DCR. Recovery of magnesium sulfate and calcium sulfate from zinc flotation tailing [Internet]. Journal of Sustainable Mining. 2025 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.46873/2300-3960.1469
  • Fonte: Minerals Engineering. Unidades: EP, RUSP

    Assuntos: HIDROMETALURGIA, NIÓBIO, ESTANHO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHACA, Darwin Michell Cheje et al. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching. Minerals Engineering, v. 232, p. 1-11, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2025.109564. Acesso em: 27 nov. 2025.
    • APA

      Machaca, D. M. C., Salazar, R. B. J., Carvalho, T. C. de, Espinosa, D. C. R., & Tenório, J. A. S. (2025). Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching. Minerals Engineering, 232, 1-11. doi:10.1016/j.mineng.2025.109564
    • NLM

      Machaca DMC, Salazar RBJ, Carvalho TC de, Espinosa DCR, Tenório JAS. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching [Internet]. Minerals Engineering. 2025 ;232 1-11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2025.109564
    • Vancouver

      Machaca DMC, Salazar RBJ, Carvalho TC de, Espinosa DCR, Tenório JAS. Recovery of niobium and tantalum from tin slags: an alternative approach using acid roasting and oxalic leaching [Internet]. Minerals Engineering. 2025 ;232 1-11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2025.109564
  • Fonte: RSC Advances. Unidades: RUSP, EP

    Assuntos: HIDROMETALURGIA, LIXIVIAÇÃO, CAVACOS, CLORETO

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OTTINK, Thomas et al. Hydrometallurgical recycling of steel grinding swarf via oxidative leaching using ferric chloride. RSC Advances, v. 15, n. 48, p. 40675-40686, 2025Tradução . . Disponível em: https://doi.org/10.1039/d5ra06768e. Acesso em: 27 nov. 2025.
    • APA

      Ottink, T., Garjulli, F., Lumetzberger, M., Espinosa, D. C. R., & Petranikova, M. (2025). Hydrometallurgical recycling of steel grinding swarf via oxidative leaching using ferric chloride. RSC Advances, 15( 48), 40675-40686. doi:10.1039/d5ra06768e
    • NLM

      Ottink T, Garjulli F, Lumetzberger M, Espinosa DCR, Petranikova M. Hydrometallurgical recycling of steel grinding swarf via oxidative leaching using ferric chloride [Internet]. RSC Advances. 2025 ;15( 48): 40675-40686.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1039/d5ra06768e
    • Vancouver

      Ottink T, Garjulli F, Lumetzberger M, Espinosa DCR, Petranikova M. Hydrometallurgical recycling of steel grinding swarf via oxidative leaching using ferric chloride [Internet]. RSC Advances. 2025 ;15( 48): 40675-40686.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1039/d5ra06768e
  • Fonte: Minerals Engineering. Unidades: RUSP, EP

    Assuntos: HIDROMETALURGIA, BAUXITA, LIXIVIAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Luís Henrique do Nascimento dos et al. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal. Minerals Engineering, v. 217, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2024.108946. Acesso em: 27 nov. 2025.
    • APA

      Santos, L. H. do N. dos, Pereira, B. da R., Rosset, M., Espinosa, D. C. R., & Botelho Junior, A. B. (2024). High purity alumina production by leaching-ion exchange process: Design and flowchart proposal. Minerals Engineering, 217, 1-13. doi:10.1016/j.mineng.2024.108946
    • NLM

      Santos LH do N dos, Pereira B da R, Rosset M, Espinosa DCR, Botelho Junior AB. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal [Internet]. Minerals Engineering. 2024 ;217 1-13.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2024.108946
    • Vancouver

      Santos LH do N dos, Pereira B da R, Rosset M, Espinosa DCR, Botelho Junior AB. High purity alumina production by leaching-ion exchange process: Design and flowchart proposal [Internet]. Minerals Engineering. 2024 ;217 1-13.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2024.108946
  • Fonte: Results in Engineering. Unidades: RUSP, EP

    Assuntos: CINÉTICA, HIDROMETALURGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PREMATHILAKE, Dilshan Sandaruwan et al. Recycling lithium-ion battery graphite: synthesis of adsorbent materials for highly efficient removal of dye and metal ions from wastewater. Results in Engineering, v. 22, p. 1-18, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.rineng.2024.102232. Acesso em: 27 nov. 2025.
    • APA

      Premathilake, D. S., Colombi, F., Botelho Junior, A. B., Tenório, J. A. S., Espinosa, D. C. R., & Vaccari, M. (2024). Recycling lithium-ion battery graphite: synthesis of adsorbent materials for highly efficient removal of dye and metal ions from wastewater. Results in Engineering, 22, 1-18. doi:10.1016/j.rineng.2024.102232
    • NLM

      Premathilake DS, Colombi F, Botelho Junior AB, Tenório JAS, Espinosa DCR, Vaccari M. Recycling lithium-ion battery graphite: synthesis of adsorbent materials for highly efficient removal of dye and metal ions from wastewater [Internet]. Results in Engineering. 2024 ;22 1-18.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.rineng.2024.102232
    • Vancouver

      Premathilake DS, Colombi F, Botelho Junior AB, Tenório JAS, Espinosa DCR, Vaccari M. Recycling lithium-ion battery graphite: synthesis of adsorbent materials for highly efficient removal of dye and metal ions from wastewater [Internet]. Results in Engineering. 2024 ;22 1-18.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.rineng.2024.102232
  • Fonte: Journal of Cleaner Production. Unidades: RUSP, EP

    Assuntos: HIDROMETALURGIA, METAIS, OZÔNIO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALES, Jeneson Medeiros de Aquino et al. Precipitation of manganese by ozone from hydrometallurgical recycling process of lithium-ion batteries. Journal of Cleaner Production, v. 434, n. Ja 2024, p. 1-11, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jclepro.2023.140099. Acesso em: 27 nov. 2025.
    • APA

      Sales, J. M. de A., Botelho, A. B., Gobo, L. A., Kumoto, E. A., Espinosa, D. C. R., & Tenório, J. A. S. (2024). Precipitation of manganese by ozone from hydrometallurgical recycling process of lithium-ion batteries. Journal of Cleaner Production, 434( Ja 2024), 1-11. doi:10.1016/j.jclepro.2023.140099
    • NLM

      Sales JM de A, Botelho AB, Gobo LA, Kumoto EA, Espinosa DCR, Tenório JAS. Precipitation of manganese by ozone from hydrometallurgical recycling process of lithium-ion batteries [Internet]. Journal of Cleaner Production. 2024 ;434( Ja 2024): 1-11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jclepro.2023.140099
    • Vancouver

      Sales JM de A, Botelho AB, Gobo LA, Kumoto EA, Espinosa DCR, Tenório JAS. Precipitation of manganese by ozone from hydrometallurgical recycling process of lithium-ion batteries [Internet]. Journal of Cleaner Production. 2024 ;434( Ja 2024): 1-11.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jclepro.2023.140099
  • Fonte: Journal of Material Cycles and Waste Management. Unidade: EP

    Assuntos: HIDROMETALURGIA, NANOPARTÍCULAS, PRATA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Yara Marinato et al. Ag recovery from waste printed circuit boards of cell phone for synthesis of Ag nanoparticles and their antibacterial activity. Journal of Material Cycles and Waste Management, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10163-022-01579-3. Acesso em: 27 nov. 2025.
    • APA

      Vieira, Y. M., Pavoski, G., Alvarez Rosario, C. G., Andrade, L. M. de, & Espinosa, D. C. R. (2023). Ag recovery from waste printed circuit boards of cell phone for synthesis of Ag nanoparticles and their antibacterial activity. Journal of Material Cycles and Waste Management, 1-15. doi:10.1007/s10163-022-01579-3
    • NLM

      Vieira YM, Pavoski G, Alvarez Rosario CG, Andrade LM de, Espinosa DCR. Ag recovery from waste printed circuit boards of cell phone for synthesis of Ag nanoparticles and their antibacterial activity [Internet]. Journal of Material Cycles and Waste Management. 2023 ; 1-15.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10163-022-01579-3
    • Vancouver

      Vieira YM, Pavoski G, Alvarez Rosario CG, Andrade LM de, Espinosa DCR. Ag recovery from waste printed circuit boards of cell phone for synthesis of Ag nanoparticles and their antibacterial activity [Internet]. Journal of Material Cycles and Waste Management. 2023 ; 1-15.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10163-022-01579-3
  • Fonte: Minerals Engineering. Unidade: EP

    Assuntos: HIDROMETALURGIA, NIÓBIO, TROCA IÔNICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Tiago Fernandes de e TENÓRIO, Jorge Alberto Soares e ESPINOSA, Denise Crocce Romano. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources. Minerals Engineering, v. 201, n. 10, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2023.108224. Acesso em: 27 nov. 2025.
    • APA

      Oliveira, T. F. de, Tenório, J. A. S., & Espinosa, D. C. R. (2023). An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources. Minerals Engineering, 201( 10), 1-15. doi:10.1016/j.mineng.2023.108224
    • NLM

      Oliveira TF de, Tenório JAS, Espinosa DCR. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources [Internet]. Minerals Engineering. 2023 ; 201( 10): 1-15.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2023.108224
    • Vancouver

      Oliveira TF de, Tenório JAS, Espinosa DCR. An overview on recent separation and purification strategies for recovery of Nb and Ta from primary and secondary ore sources [Internet]. Minerals Engineering. 2023 ; 201( 10): 1-15.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2023.108224
  • Fonte: JOM. Unidades: RUSP, EP

    Assuntos: METAIS, LIXIVIAÇÃO, HIDROMETALURGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOMINGOS, Ana Eluiza Esther da Cunha et al. Extraction of critical metals from secondary source: leaching Ti and V from Brazilian Fe-Ti-V deposit residue. JOM, v. 75, n. 5, p. 1-10, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11837-023-05774-x. Acesso em: 27 nov. 2025.
    • APA

      Domingos, A. E. E. da C., Botelho Junior, A. B., Duarte, H. A., Tenório, J. A. S., Espinosa, D. C. R., & Baltazar, M. dos P. G. (2023). Extraction of critical metals from secondary source: leaching Ti and V from Brazilian Fe-Ti-V deposit residue. JOM, 75( 5), 1-10. doi:10.1007/s11837-023-05774-x
    • NLM

      Domingos AEE da C, Botelho Junior AB, Duarte HA, Tenório JAS, Espinosa DCR, Baltazar M dos PG. Extraction of critical metals from secondary source: leaching Ti and V from Brazilian Fe-Ti-V deposit residue [Internet]. JOM. 2023 ; 75( 5): 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11837-023-05774-x
    • Vancouver

      Domingos AEE da C, Botelho Junior AB, Duarte HA, Tenório JAS, Espinosa DCR, Baltazar M dos PG. Extraction of critical metals from secondary source: leaching Ti and V from Brazilian Fe-Ti-V deposit residue [Internet]. JOM. 2023 ; 75( 5): 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11837-023-05774-x
  • Fonte: Nano technology for battery recycling, remanufacturing, and reusing : micro and nano technologies. Unidade: EP

    Assuntos: BATERIAS ELÉTRICAS, NANOTECNOLOGIA, RECICLAGEM DE RESÍDUOS URBANOS, HIDROMETALURGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVOSKI, Giovani et al. Chapter 3 - Nanotechnology and recycling, remanufacturing, and reusing battery. Nano technology for battery recycling, remanufacturing, and reusing : micro and nano technologies. Tradução . Amsterdam: Elsevier, 2022. . Disponível em: https://doi.org/10.1016/B978-0-323-91134-4.00022-4. Acesso em: 27 nov. 2025.
    • APA

      Pavoski, G., Botelho Junior, A. B., Chaves, R. M., Maraschin, T., Oviedo, L. R., Martins, T. A. G., et al. (2022). Chapter 3 - Nanotechnology and recycling, remanufacturing, and reusing battery. In Nano technology for battery recycling, remanufacturing, and reusing : micro and nano technologies. Amsterdam: Elsevier. doi:10.1016/B978-0-323-91134-4.00022-4
    • NLM

      Pavoski G, Botelho Junior AB, Chaves RM, Maraschin T, Oviedo LR, Martins TAG, Silva WL da, Bertuol DA, Espinosa DCR. Chapter 3 - Nanotechnology and recycling, remanufacturing, and reusing battery [Internet]. In: Nano technology for battery recycling, remanufacturing, and reusing : micro and nano technologies. Amsterdam: Elsevier; 2022. [citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/B978-0-323-91134-4.00022-4
    • Vancouver

      Pavoski G, Botelho Junior AB, Chaves RM, Maraschin T, Oviedo LR, Martins TAG, Silva WL da, Bertuol DA, Espinosa DCR. Chapter 3 - Nanotechnology and recycling, remanufacturing, and reusing battery [Internet]. In: Nano technology for battery recycling, remanufacturing, and reusing : micro and nano technologies. Amsterdam: Elsevier; 2022. [citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/B978-0-323-91134-4.00022-4
  • Fonte: Minerals Engineering. Unidade: EP

    Assuntos: BATERIAS ELÉTRICAS, AUTOMÓVEIS, HIDROMETALURGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUIMARÃES, Lucas Fonseca e BOTELHO JUNIOR, Amilton Barbosa e ESPINOSA, Denise Crocce Romano. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Minerals Engineering, v. 183, p. 1-14, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.mineng.2022.107597. Acesso em: 27 nov. 2025.
    • APA

      Guimarães, L. F., Botelho Junior, A. B., & Espinosa, D. C. R. (2022). Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent. Minerals Engineering, 183, 1-14. doi:10.1016/j.mineng.2022.107597
    • NLM

      Guimarães LF, Botelho Junior AB, Espinosa DCR. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent [Internet]. Minerals Engineering. 2022 ; 183 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2022.107597
    • Vancouver

      Guimarães LF, Botelho Junior AB, Espinosa DCR. Sulfuric acid leaching of metals from waste Li-ion batteries without using reducing agent [Internet]. Minerals Engineering. 2022 ; 183 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.mineng.2022.107597
  • Fonte: Journal of Sustainable Metallurgy. Unidade: EP

    Assuntos: HIDROMETALURGIA, FERRO, COBALTO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMORIM, Luiz Henrique Moura de et al. Effect of impurities in the recovery of critical metals: the case of nickel laterite in the solvent extraction process. Journal of Sustainable Metallurgy, v. 8, p. 501–510, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40831-022-00510-2. Acesso em: 27 nov. 2025.
    • APA

      Amorim, L. H. M. de, Aliprandini, P., Botelho Junior, A. B., Jimenez Correa, M. M., & Espinosa, D. C. R. (2022). Effect of impurities in the recovery of critical metals: the case of nickel laterite in the solvent extraction process. Journal of Sustainable Metallurgy, 8, 501–510. doi:10.1007/s40831-022-00510-2
    • NLM

      Amorim LHM de, Aliprandini P, Botelho Junior AB, Jimenez Correa MM, Espinosa DCR. Effect of impurities in the recovery of critical metals: the case of nickel laterite in the solvent extraction process [Internet]. Journal of Sustainable Metallurgy. 2022 ; 8 501–510.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40831-022-00510-2
    • Vancouver

      Amorim LHM de, Aliprandini P, Botelho Junior AB, Jimenez Correa MM, Espinosa DCR. Effect of impurities in the recovery of critical metals: the case of nickel laterite in the solvent extraction process [Internet]. Journal of Sustainable Metallurgy. 2022 ; 8 501–510.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40831-022-00510-2
  • Fonte: Rare metal technology 2022. Unidade: EP

    Assuntos: ESCÂNDIO, HIDROMETALURGIA, RESÍDUOS, BAUXITA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTELHO JUNIOR, Amilton Barbosa e ESPINOSA, Denise Crocce Romano e TENÓRIO, Jorge Alberto Soares. Separation of scandium by phosphinic acid extractant from sulfuric acid solution. Rare metal technology 2022. Tradução . Cham: Springer, 2022. . Disponível em: https://doi.org/10.1007/978-3-030-92662-5_7. Acesso em: 27 nov. 2025.
    • APA

      Botelho Junior, A. B., Espinosa, D. C. R., & Tenório, J. A. S. (2022). Separation of scandium by phosphinic acid extractant from sulfuric acid solution. In Rare metal technology 2022. Cham: Springer. doi:10.1007/978-3-030-92662-5_7
    • NLM

      Botelho Junior AB, Espinosa DCR, Tenório JAS. Separation of scandium by phosphinic acid extractant from sulfuric acid solution [Internet]. In: Rare metal technology 2022. Cham: Springer; 2022. [citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/978-3-030-92662-5_7
    • Vancouver

      Botelho Junior AB, Espinosa DCR, Tenório JAS. Separation of scandium by phosphinic acid extractant from sulfuric acid solution [Internet]. In: Rare metal technology 2022. Cham: Springer; 2022. [citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/978-3-030-92662-5_7
  • Fonte: Detritus. Unidade: EP

    Assuntos: MINERAÇÃO, HIDROMETALURGIA, PRATA, COBRE

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Lidiane Maria de et al. Recovery of copper and silver of printed circuit boards from obsolete computers by one-step acid leaching. Detritus, v. 14, p. 86-91, 2021Tradução . . Disponível em: https://doi.org/10.31025/2611-4135/2021.14056. Acesso em: 27 nov. 2025.
    • APA

      Andrade, L. M. de, Carvalho, M. A. de, Caldas, M. P. K., Espinosa, D. C. R., & Tenório, J. A. S. (2021). Recovery of copper and silver of printed circuit boards from obsolete computers by one-step acid leaching. Detritus, 14, 86-91. doi:10.31025/2611-4135/2021.14056
    • NLM

      Andrade LM de, Carvalho MA de, Caldas MPK, Espinosa DCR, Tenório JAS. Recovery of copper and silver of printed circuit boards from obsolete computers by one-step acid leaching [Internet]. Detritus. 2021 ; 14 86-91.[citado 2025 nov. 27 ] Available from: https://doi.org/10.31025/2611-4135/2021.14056
    • Vancouver

      Andrade LM de, Carvalho MA de, Caldas MPK, Espinosa DCR, Tenório JAS. Recovery of copper and silver of printed circuit boards from obsolete computers by one-step acid leaching [Internet]. Detritus. 2021 ; 14 86-91.[citado 2025 nov. 27 ] Available from: https://doi.org/10.31025/2611-4135/2021.14056
  • Fonte: Separation and Purification Technology. Unidades: RUSP, EP

    Assuntos: HIDROMETALURGIA, METAIS, ELETRODIÁLISE, NÍQUEL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEIJOO, Gustavo Coelho et al. Electrodialysis for concentrating cobalt, chromium, manganese, and magnesium from a synthetic solution based on a nickel laterite processing route. Separation and Purification Technology, v. 275, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.seppur.2021.119192. Acesso em: 27 nov. 2025.
    • APA

      Feijoo, G. C., Barros, K. S., Scarazzato, T., & Espinosa, D. C. R. (2021). Electrodialysis for concentrating cobalt, chromium, manganese, and magnesium from a synthetic solution based on a nickel laterite processing route. Separation and Purification Technology, 275, 1-10. doi:10.1016/j.seppur.2021.119192
    • NLM

      Feijoo GC, Barros KS, Scarazzato T, Espinosa DCR. Electrodialysis for concentrating cobalt, chromium, manganese, and magnesium from a synthetic solution based on a nickel laterite processing route [Internet]. Separation and Purification Technology. 2021 ; 275 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.seppur.2021.119192
    • Vancouver

      Feijoo GC, Barros KS, Scarazzato T, Espinosa DCR. Electrodialysis for concentrating cobalt, chromium, manganese, and magnesium from a synthetic solution based on a nickel laterite processing route [Internet]. Separation and Purification Technology. 2021 ; 275 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.seppur.2021.119192
  • Fonte: Journal of Rare Earths. Unidade: EP

    Assuntos: TERRAS RARAS, ÍTRIO, METAIS, HIDROMETALURGIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTELHO JUNIOR, Amilton Barbosa e ESPINOSA, Denise Crocce Romano e TENÓRIO, Jorge Alberto Soares. The use of computational thermodynamic for yttrium recovery from rare earth elements-bearing residue. Journal of Rare Earths, v. 39, n. 2, p. 201-207, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jre.2020.02.019. Acesso em: 27 nov. 2025.
    • APA

      Botelho Junior, A. B., Espinosa, D. C. R., & Tenório, J. A. S. (2021). The use of computational thermodynamic for yttrium recovery from rare earth elements-bearing residue. Journal of Rare Earths, 39( 2), 201-207. doi:10.1016/j.jre.2020.02.019
    • NLM

      Botelho Junior AB, Espinosa DCR, Tenório JAS. The use of computational thermodynamic for yttrium recovery from rare earth elements-bearing residue [Internet]. Journal of Rare Earths. 2021 ; 39( 2): 201-207.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jre.2020.02.019
    • Vancouver

      Botelho Junior AB, Espinosa DCR, Tenório JAS. The use of computational thermodynamic for yttrium recovery from rare earth elements-bearing residue [Internet]. Journal of Rare Earths. 2021 ; 39( 2): 201-207.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jre.2020.02.019
  • Fonte: Renewable and Sustainable Energy Reviews. Unidades: RUSP, EP

    Assuntos: GÁLIO, HIDROMETALURGIA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, R P e BENVENUTI , Jaqueline e ESPINOSA, Denise Crocce Romano. A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes. Renewable and Sustainable Energy Reviews, v. 145, p. 1-15, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.rser.2021.111090. Acesso em: 27 nov. 2025.
    • APA

      Oliveira, R. P., Benvenuti , J., & Espinosa, D. C. R. (2021). A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes. Renewable and Sustainable Energy Reviews, 145, 1-15. doi:10.1016/j.rser.2021.111090
    • NLM

      Oliveira RP, Benvenuti J, Espinosa DCR. A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes [Internet]. Renewable and Sustainable Energy Reviews. 2021 ; 145 1-15.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.rser.2021.111090
    • Vancouver

      Oliveira RP, Benvenuti J, Espinosa DCR. A review of the current progress in recycling technologies for gallium and rare earth elements from light-emitting diodes [Internet]. Renewable and Sustainable Energy Reviews. 2021 ; 145 1-15.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.rser.2021.111090
  • Fonte: Journal of Environmental Chemical Engineerin. Unidade: EP

    Assuntos: HIDROMETALURGIA, METAIS, LIXIVIAÇÃO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Thamiris Auxiliadora Gonçalves et al. Recovering metals from motherboard and memory board waste through sulfuric leaching. Journal of Environmental Chemical Engineerin, v. 9, n. 106789, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jece.2021.106789. Acesso em: 27 nov. 2025.
    • APA

      Martins, T. A. G., Caldas, M. P. K., Moraes, V. T. de, Tenório, J. A. S., & Espinosa, D. C. R. (2021). Recovering metals from motherboard and memory board waste through sulfuric leaching. Journal of Environmental Chemical Engineerin, 9( 106789). doi:10.1016/j.jece.2021.106789
    • NLM

      Martins TAG, Caldas MPK, Moraes VT de, Tenório JAS, Espinosa DCR. Recovering metals from motherboard and memory board waste through sulfuric leaching [Internet]. Journal of Environmental Chemical Engineerin. 2021 ; 9( 106789):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jece.2021.106789
    • Vancouver

      Martins TAG, Caldas MPK, Moraes VT de, Tenório JAS, Espinosa DCR. Recovering metals from motherboard and memory board waste through sulfuric leaching [Internet]. Journal of Environmental Chemical Engineerin. 2021 ; 9( 106789):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jece.2021.106789

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025