Source: Proceedings of SPIE. Conference titles: SPIE Medical Imaging. Unidades: EP, ICMC
Subjects: REDES NEURAIS, APRENDIZADO COMPUTACIONAL, RECONHECIMENTO DE IMAGEM, TECNOLOGIAS DA SAÚDE, RADIOGRAFIA, COVID-19
ABNT
AGUIAR, Erikson Júlio de et al. Evaluation of the impact of physical adversarial attacks on deep learning models for classifying covid cases. Proceedings of SPIE. Bellingham: International Society for Optical Engineering - SPIE. Disponível em: https://doi.org/10.1117/12.2611199. Acesso em: 14 nov. 2024. , 2022APA
Aguiar, E. J. de, Marcomini, K. D., Quirino, F. A., Gutierrez, M. A., Traina Junior, C., & Traina, A. J. M. (2022). Evaluation of the impact of physical adversarial attacks on deep learning models for classifying covid cases. Proceedings of SPIE. Bellingham: International Society for Optical Engineering - SPIE. doi:10.1117/12.2611199NLM
Aguiar EJ de, Marcomini KD, Quirino FA, Gutierrez MA, Traina Junior C, Traina AJM. Evaluation of the impact of physical adversarial attacks on deep learning models for classifying covid cases [Internet]. Proceedings of SPIE. 2022 ; 12033 120332P-1-120332P-7.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1117/12.2611199Vancouver
Aguiar EJ de, Marcomini KD, Quirino FA, Gutierrez MA, Traina Junior C, Traina AJM. Evaluation of the impact of physical adversarial attacks on deep learning models for classifying covid cases [Internet]. Proceedings of SPIE. 2022 ; 12033 120332P-1-120332P-7.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1117/12.2611199