Filtros : "Differential and Integral Equations" Removido: "ICMC" Limpar

Filtros



Limitar por data


  • Fonte: Differential and Integral Equations. Unidade: FFCLRP

    Assuntos: MATEMÁTICA DA COMPUTAÇÃO, MASSA, INVARIANTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASLAN, Halit Sevki e EBERT, Marcelo Rempel e REISSIG, Michael. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, v. 36, n. 5/6, p. 453-490, 2023Tradução . . Disponível em: https://doi.org/10.57262/die036-0506-453. Acesso em: 18 nov. 2024.
    • APA

      Aslan, H. S., Ebert, M. R., & Reissig, M. (2023). Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, 36( 5/6), 453-490. doi:10.57262/die036-0506-453
    • NLM

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 18 ] Available from: https://doi.org/10.57262/die036-0506-453
    • Vancouver

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 18 ] Available from: https://doi.org/10.57262/die036-0506-453
  • Fonte: Differential and Integral Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES PSEUDODIFERENCIAIS

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin G e SICILIANO, Gaetano. Positive semiclassical states for a fractional Schrödinger-Poisson system. Differential and Integral Equations, v. 30, n. 3-4, p. 231-258, 2017Tradução . . Disponível em: https://projecteuclid.org/euclid.die/1487386824. Acesso em: 18 nov. 2024.
    • APA

      Murcia, E. G., & Siciliano, G. (2017). Positive semiclassical states for a fractional Schrödinger-Poisson system. Differential and Integral Equations, 30( 3-4), 231-258. Recuperado de https://projecteuclid.org/euclid.die/1487386824
    • NLM

      Murcia EG, Siciliano G. Positive semiclassical states for a fractional Schrödinger-Poisson system [Internet]. Differential and Integral Equations. 2017 ; 30( 3-4): 231-258.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1487386824
    • Vancouver

      Murcia EG, Siciliano G. Positive semiclassical states for a fractional Schrödinger-Poisson system [Internet]. Differential and Integral Equations. 2017 ; 30( 3-4): 231-258.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/euclid.die/1487386824
  • Fonte: Differential and Integral Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, SOLUÇÕES PERIÓDICAS, MECÂNICA DOS FLUÍDOS

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e NATALI, Fábio. On the instability of periodic waves for dispersive equations. Differential and Integral Equations, v. 29, n. 9/10, p. 837-874, 2016Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.die/1465912606. Acesso em: 18 nov. 2024.
    • APA

      Pava, J. A., & Natali, F. (2016). On the instability of periodic waves for dispersive equations. Differential and Integral Equations, 29( 9/10), 837-874. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.die/1465912606
    • NLM

      Pava JA, Natali F. On the instability of periodic waves for dispersive equations [Internet]. Differential and Integral Equations. 2016 ; 29( 9/10): 837-874.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.die/1465912606
    • Vancouver

      Pava JA, Natali F. On the instability of periodic waves for dispersive equations [Internet]. Differential and Integral Equations. 2016 ; 29( 9/10): 837-874.[citado 2024 nov. 18 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.die/1465912606
  • Fonte: Differential and Integral Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER, PROBLEMA DE CAUCHY

    Acesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e FERREIRA, Lucas Catão de Freitas. On the Schrödinger equation with singular potentials. Differential and Integral Equations, v. 27, n. 7/8, p. 767-800, 2014Tradução . . Disponível em: http://projecteuclid.org/euclid.die/1399395752. Acesso em: 18 nov. 2024.
    • APA

      Pava, J. A., & Ferreira, L. C. de F. (2014). On the Schrödinger equation with singular potentials. Differential and Integral Equations, 27( 7/8), 767-800. Recuperado de http://projecteuclid.org/euclid.die/1399395752
    • NLM

      Pava JA, Ferreira LC de F. On the Schrödinger equation with singular potentials [Internet]. Differential and Integral Equations. 2014 ; 27( 7/8): 767-800.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1399395752
    • Vancouver

      Pava JA, Ferreira LC de F. On the Schrödinger equation with singular potentials [Internet]. Differential and Integral Equations. 2014 ; 27( 7/8): 767-800.[citado 2024 nov. 18 ] Available from: http://projecteuclid.org/euclid.die/1399395752

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2024