Filtros : "Computational Mechanics" Removido: "Wriggers, Peter" Limpar

Filtros



Refine with date range


  • Source: Computational Mechanics. Unidade: EP

    Assunto: MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANCHEZ, Matheus Lucci e PIMENTA, Paulo de Mattos e IBRAHIMBEGOVIC, Adnan. A simple geometrically exact finite element for thin shells: part 1: statics. Computational Mechanics, v. 72, n. 6, p. 1119–1139, 2023Tradução . . Disponível em: https://doi.org/10.1007/s00466-023-02339-2. Acesso em: 31 out. 2024.
    • APA

      Sanchez, M. L., Pimenta, P. de M., & Ibrahimbegovic, A. (2023). A simple geometrically exact finite element for thin shells: part 1: statics. Computational Mechanics, 72( 6), 1119–1139. doi:10.1007/s00466-023-02339-2
    • NLM

      Sanchez ML, Pimenta P de M, Ibrahimbegovic A. A simple geometrically exact finite element for thin shells: part 1: statics [Internet]. Computational Mechanics. 2023 ; 72( 6): 1119–1139.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-023-02339-2
    • Vancouver

      Sanchez ML, Pimenta P de M, Ibrahimbegovic A. A simple geometrically exact finite element for thin shells: part 1: statics [Internet]. Computational Mechanics. 2023 ; 72( 6): 1119–1139.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-023-02339-2
  • Source: Computational Mechanics. Unidade: ICMC

    Subjects: MECÂNICA DOS FLUÍDOS COMPUTACIONAL, EQUAÇÕES DIFERENCIAIS, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA-HAVEROTH, Thais Clara et al. A damage phase-field model for fractional viscoelastic materials in finite strain. Computational Mechanics, v. 69, n. 6, p. 1365-1393, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00466-022-02145-2. Acesso em: 31 out. 2024.
    • APA

      Costa-Haveroth, T. C., Haveroth, G. A., Bittencourt, M. L., & Boldrini, J. L. (2022). A damage phase-field model for fractional viscoelastic materials in finite strain. Computational Mechanics, 69( 6), 1365-1393. doi:10.1007/s00466-022-02145-2
    • NLM

      Costa-Haveroth TC, Haveroth GA, Bittencourt ML, Boldrini JL. A damage phase-field model for fractional viscoelastic materials in finite strain [Internet]. Computational Mechanics. 2022 ; 69( 6): 1365-1393.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-022-02145-2
    • Vancouver

      Costa-Haveroth TC, Haveroth GA, Bittencourt ML, Boldrini JL. A damage phase-field model for fractional viscoelastic materials in finite strain [Internet]. Computational Mechanics. 2022 ; 69( 6): 1365-1393.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-022-02145-2
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: PLASTICIDADE DAS ESTRUTURAS, MÉTODO DOS ELEMENTOS FINITOS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CODA, Humberto Breves. A finite strain elastoplastic model based on Flory’s decomposition and 3D FEM applications. Computational Mechanics, p. [1-22], 2021Tradução . . Disponível em: https://doi.org/10.1007/s00466-021-02092-4. Acesso em: 31 out. 2024.
    • APA

      Coda, H. B. (2021). A finite strain elastoplastic model based on Flory’s decomposition and 3D FEM applications. Computational Mechanics, [1-22]. doi:10.1007/s00466-021-02092-4
    • NLM

      Coda HB. A finite strain elastoplastic model based on Flory’s decomposition and 3D FEM applications [Internet]. Computational Mechanics. 2021 ; [1-22].[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-021-02092-4
    • Vancouver

      Coda HB. A finite strain elastoplastic model based on Flory’s decomposition and 3D FEM applications [Internet]. Computational Mechanics. 2021 ; [1-22].[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-021-02092-4
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: ESTRUTURAS, ELASTICIDADE DAS ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TONON, Patricia et al. A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion. Computational Mechanics, v. 67, p. 413-434, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00466-020-01941-y. Acesso em: 31 out. 2024.
    • APA

      Tonon, P., Sanches, R. A. K., Takizawa, K., & Tezduyar, T. E. (2021). A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion. Computational Mechanics, 67, 413-434. doi:10.1007/s00466-020-01941-y
    • NLM

      Tonon P, Sanches RAK, Takizawa K, Tezduyar TE. A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion [Internet]. Computational Mechanics. 2021 ; 67 413-434.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-020-01941-y
    • Vancouver

      Tonon P, Sanches RAK, Takizawa K, Tezduyar TE. A linear-elasticity-based mesh moving method with no cycle-to-cycle accumulated distortion [Internet]. Computational Mechanics. 2021 ; 67 413-434.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-020-01941-y
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, ARGAMASSA, ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIAS, Allan Patrick Cordeiro e PROENÇA, Sérgio Persival Baroncini e BITTENCOURT, Marco Lúcio. High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces. Computational Mechanics, v. 64, n. 1, p. 88-112, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00466-018-1658-6. Acesso em: 31 out. 2024.
    • APA

      Dias, A. P. C., Proença, S. P. B., & Bittencourt, M. L. (2019). High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces. Computational Mechanics, 64( 1), 88-112. doi:10.1007/s00466-018-1658-6
    • NLM

      Dias APC, Proença SPB, Bittencourt ML. High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces [Internet]. Computational Mechanics. 2019 ; 64( 1): 88-112.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-018-1658-6
    • Vancouver

      Dias APC, Proença SPB, Bittencourt ML. High-order mortar-based contact element using NURBS for the mapping of contact curved surfaces [Internet]. Computational Mechanics. 2019 ; 64( 1): 88-112.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-018-1658-6
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, DEFORMAÇÃO ESTRUTURAL, ANÁLISE NÃO LINEAR DE ESTRUTURAS, ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Jeferson Willian Dossa e CODA, Humberto Breves e SANCHES, Rodolfo André Kuche. ALE incompressible fluid–shell coupling based on a higher-order auxiliary mesh and positional shell finite element. Computational Mechanics, v. 63, n. 3, p. 555-569, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00466-018-1609-2. Acesso em: 31 out. 2024.
    • APA

      Fernandes, J. W. D., Coda, H. B., & Sanches, R. A. K. (2019). ALE incompressible fluid–shell coupling based on a higher-order auxiliary mesh and positional shell finite element. Computational Mechanics, 63( 3), 555-569. doi:10.1007/s00466-018-1609-2
    • NLM

      Fernandes JWD, Coda HB, Sanches RAK. ALE incompressible fluid–shell coupling based on a higher-order auxiliary mesh and positional shell finite element [Internet]. Computational Mechanics. 2019 ; 63( 3): 555-569.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-018-1609-2
    • Vancouver

      Fernandes JWD, Coda HB, Sanches RAK. ALE incompressible fluid–shell coupling based on a higher-order auxiliary mesh and positional shell finite element [Internet]. Computational Mechanics. 2019 ; 63( 3): 555-569.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-018-1609-2
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, JUNTAS ESTRUTURAIS, ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIQUEIRA, Tiago Morkis e CODA, Humberto Breves. Flexible actuator finite element applied to spatial mechanisms by a finite deformation dynamic formulation. Computational Mechanics, v. 64, p. 1517–1535, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00466-019-01732-0. Acesso em: 31 out. 2024.
    • APA

      Siqueira, T. M., & Coda, H. B. (2019). Flexible actuator finite element applied to spatial mechanisms by a finite deformation dynamic formulation. Computational Mechanics, 64, 1517–1535. doi:10.1007/s00466-019-01732-0
    • NLM

      Siqueira TM, Coda HB. Flexible actuator finite element applied to spatial mechanisms by a finite deformation dynamic formulation [Internet]. Computational Mechanics. 2019 ; 64 1517–1535.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-019-01732-0
    • Vancouver

      Siqueira TM, Coda HB. Flexible actuator finite element applied to spatial mechanisms by a finite deformation dynamic formulation [Internet]. Computational Mechanics. 2019 ; 64 1517–1535.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-019-01732-0
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: ELASTICIDADE DAS ESTRUTURAS, MECÂNICA DA FRATURA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LINS, Rafael Marques et al. An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method. Computational Mechanics, v. 56, n. 6, p. 947-965, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00466-015-1212-8. Acesso em: 31 out. 2024.
    • APA

      Lins, R. M., Ferreira, M. D. C., Proença, S. P. B., & Duarte, C. A. M. (2015). An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method. Computational Mechanics, 56( 6), 947-965. doi:10.1007/s00466-015-1212-8
    • NLM

      Lins RM, Ferreira MDC, Proença SPB, Duarte CAM. An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method [Internet]. Computational Mechanics. 2015 ; 56( 6): 947-965.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-015-1212-8
    • Vancouver

      Lins RM, Ferreira MDC, Proença SPB, Duarte CAM. An a-posteriori error estimator for linear elastic fracture mechanics using the stable generalized/extended finite element method [Internet]. Computational Mechanics. 2015 ; 56( 6): 947-965.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-015-1212-8
  • Source: Computational Mechanics. Unidade: EP

    Subjects: CABOS DE AMARRAÇÃO, TUBOS FLEXÍVEIS, MÉTODO DOS ELEMENTOS FINITOS, ESTATÍSTICA (ANÁLISE)

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GAY NETO, Alfredo e MARTINS, Clóvis de Arruda e PIMENTA, Paulo de Mattos. Static analysis of offshore risers with geometricallyexcat 3 D beam model subjected to unilateral contact. Computational Mechanics, v. 53, p. 125-145, 2014Tradução . . Disponível em: http://link.springer.com/article/10.1007/s00466-013-0897-9#page-1. Acesso em: 31 out. 2024.
    • APA

      Gay Neto, A., Martins, C. de A., & Pimenta, P. de M. (2014). Static analysis of offshore risers with geometricallyexcat 3 D beam model subjected to unilateral contact. Computational Mechanics, 53, 125-145. doi:10.1007/s00466-013-0897-9
    • NLM

      Gay Neto A, Martins C de A, Pimenta P de M. Static analysis of offshore risers with geometricallyexcat 3 D beam model subjected to unilateral contact [Internet]. Computational Mechanics. 2014 ; 53 125-145.[citado 2024 out. 31 ] Available from: http://link.springer.com/article/10.1007/s00466-013-0897-9#page-1
    • Vancouver

      Gay Neto A, Martins C de A, Pimenta P de M. Static analysis of offshore risers with geometricallyexcat 3 D beam model subjected to unilateral contact [Internet]. Computational Mechanics. 2014 ; 53 125-145.[citado 2024 out. 31 ] Available from: http://link.springer.com/article/10.1007/s00466-013-0897-9#page-1
  • Source: Computational Mechanics. Unidade: EP

    Subjects: MÉTODOS TOPOLÓGICOS (OTIMIZAÇÃO), PLASTICIDADE DAS ESTRUTURAS, MÉTODO DOS ELEMENTOS FINITOS

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAHUERTA, Ricardo Doll et al. Towards the stabilization of the low density elements in topology optimization with large deformation. Computational Mechanics, v. 52, n. 4, p. 779-797, 2013Tradução . . Disponível em: http://www.researchgate.net/publication/236213631_Towards_the_stabilization_of_the_low_density_elements_in_topology_optimization_with_large_deformation. Acesso em: 31 out. 2024.
    • APA

      Lahuerta, R. D., Simões, E. T., Campello, E. de M. B., Pimenta, P. de M., & Silva, E. C. N. (2013). Towards the stabilization of the low density elements in topology optimization with large deformation. Computational Mechanics, 52( 4), 779-797. doi:10.1007/s00466-013-084-x
    • NLM

      Lahuerta RD, Simões ET, Campello E de MB, Pimenta P de M, Silva ECN. Towards the stabilization of the low density elements in topology optimization with large deformation [Internet]. Computational Mechanics. 2013 ; 52( 4): 779-797.[citado 2024 out. 31 ] Available from: http://www.researchgate.net/publication/236213631_Towards_the_stabilization_of_the_low_density_elements_in_topology_optimization_with_large_deformation
    • Vancouver

      Lahuerta RD, Simões ET, Campello E de MB, Pimenta P de M, Silva ECN. Towards the stabilization of the low density elements in topology optimization with large deformation [Internet]. Computational Mechanics. 2013 ; 52( 4): 779-797.[citado 2024 out. 31 ] Available from: http://www.researchgate.net/publication/236213631_Towards_the_stabilization_of_the_low_density_elements_in_topology_optimization_with_large_deformation
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: ANÁLISE NÃO LINEAR DE ESTRUTURAS, PLASTICIDADE DAS ESTRUTURAS, MÉTODO DOS ELEMENTOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAE, Jam Kim e DUARTE, Carlos A. e PROENÇA, Sérgio Persival Baroncini. A generalized finite element method with global-local enrichment functions for confined plasticity problems. Computational Mechanics, v. No 2012, n. 5, p. 563-578, 2012Tradução . . Disponível em: https://doi.org/10.1007/s00466-012-0689-7. Acesso em: 31 out. 2024.
    • APA

      Dae, J. K., Duarte, C. A., & Proença, S. P. B. (2012). A generalized finite element method with global-local enrichment functions for confined plasticity problems. Computational Mechanics, No 2012( 5), 563-578. doi:10.1007/s00466-012-0689-7
    • NLM

      Dae JK, Duarte CA, Proença SPB. A generalized finite element method with global-local enrichment functions for confined plasticity problems [Internet]. Computational Mechanics. 2012 ; No 2012( 5): 563-578.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-012-0689-7
    • Vancouver

      Dae JK, Duarte CA, Proença SPB. A generalized finite element method with global-local enrichment functions for confined plasticity problems [Internet]. Computational Mechanics. 2012 ; No 2012( 5): 563-578.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-012-0689-7
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: ANÁLISE NÃO LINEAR DE ESTRUTURAS, MÉTODO DOS ELEMENTOS DE CONTORNO, CHAPAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WAIDEMAM, Leandro e VENTURINI, Wilson Sergio. A boundary element formulation for analysis of elastoplastic plates with geometrical nonlinearity. Computational Mechanics, v. 45, n. 4, p. 335-347, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00466-009-0447-7. Acesso em: 31 out. 2024.
    • APA

      Waidemam, L., & Venturini, W. S. (2010). A boundary element formulation for analysis of elastoplastic plates with geometrical nonlinearity. Computational Mechanics, 45( 4), 335-347. doi:10.1007/s00466-009-0447-7
    • NLM

      Waidemam L, Venturini WS. A boundary element formulation for analysis of elastoplastic plates with geometrical nonlinearity [Internet]. Computational Mechanics. 2010 ; 45( 4): 335-347.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-009-0447-7
    • Vancouver

      Waidemam L, Venturini WS. A boundary element formulation for analysis of elastoplastic plates with geometrical nonlinearity [Internet]. Computational Mechanics. 2010 ; 45( 4): 335-347.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-009-0447-7
  • Source: Computational Mechanics. Unidades: EESC, EP

    Subjects: MÉTODO DOS ELEMENTOS DE CONTORNO, MECÂNICA DA FRATURA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANZOLI, Osvaldo Luis e VENTURINI, Wilson Sérgio. An implicit BEM formulation to model strong discontinuities in solids. Computational Mechanics, v. No 2007, n. 6, p. 901-909, 2007Tradução . . Disponível em: https://doi.org/10.1007/s00466-006-0149-3. Acesso em: 31 out. 2024.
    • APA

      Manzoli, O. L., & Venturini, W. S. (2007). An implicit BEM formulation to model strong discontinuities in solids. Computational Mechanics, No 2007( 6), 901-909. doi:10.1007/s00466-006-0149-3
    • NLM

      Manzoli OL, Venturini WS. An implicit BEM formulation to model strong discontinuities in solids [Internet]. Computational Mechanics. 2007 ; No 2007( 6): 901-909.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-006-0149-3
    • Vancouver

      Manzoli OL, Venturini WS. An implicit BEM formulation to model strong discontinuities in solids [Internet]. Computational Mechanics. 2007 ; No 2007( 6): 901-909.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-006-0149-3
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CODA, Humberto Breves e PACCOLA, Rodrigo Ribeiro. An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements. Computational Mechanics, v. 40, n. 1, p. 185-200, 2007Tradução . . Disponível em: http://www.springerlink.com.w10077.dotlib.com.br/content/50412788388527lu/fulltext.pdf. Acesso em: 31 out. 2024.
    • APA

      Coda, H. B., & Paccola, R. R. (2007). An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements. Computational Mechanics, 40( 1), 185-200. Recuperado de http://www.springerlink.com.w10077.dotlib.com.br/content/50412788388527lu/fulltext.pdf
    • NLM

      Coda HB, Paccola RR. An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements [Internet]. Computational Mechanics. 2007 ; 40( 1): 185-200.[citado 2024 out. 31 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/50412788388527lu/fulltext.pdf
    • Vancouver

      Coda HB, Paccola RR. An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements [Internet]. Computational Mechanics. 2007 ; 40( 1): 185-200.[citado 2024 out. 31 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/50412788388527lu/fulltext.pdf
  • Source: Computational Mechanics. Unidades: EP, EESC

    Subjects: ELASTICIDADE, ELASTICIDADE DAS ESTRUTURAS, DEFORMAÇÃO ELÁSTICA, CINEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DRIEMEIER, Larissa e COMI, Claudia e PROENÇA, Sérgio Persival Baroncini. On nonlocal regularization in one dimensional finite strain elasticity and plasticity. Computational Mechanics, v. 36, n. 1, p. 34-44, 2005Tradução . . Disponível em: https://doi.org/10.1007/s00466-004-0640-7. Acesso em: 31 out. 2024.
    • APA

      Driemeier, L., Comi, C., & Proença, S. P. B. (2005). On nonlocal regularization in one dimensional finite strain elasticity and plasticity. Computational Mechanics, 36( 1), 34-44. doi:10.1007/s00466-004-0640-7
    • NLM

      Driemeier L, Comi C, Proença SPB. On nonlocal regularization in one dimensional finite strain elasticity and plasticity [Internet]. Computational Mechanics. 2005 ; 36( 1): 34-44.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-004-0640-7
    • Vancouver

      Driemeier L, Comi C, Proença SPB. On nonlocal regularization in one dimensional finite strain elasticity and plasticity [Internet]. Computational Mechanics. 2005 ; 36( 1): 34-44.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-004-0640-7
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, ALGORITMOS (IDENTIFICAÇÃO)

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRECO, Marcelo e CODA, Humberto Breves e VENTURINI, Wilson Sérgio. An alternative contact/impact identification algorithm for 2d structural problems. Computational Mechanics, v. 34, n. 5, p. 410-422, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00466-004-0586-9. Acesso em: 31 out. 2024.
    • APA

      Greco, M., Coda, H. B., & Venturini, W. S. (2004). An alternative contact/impact identification algorithm for 2d structural problems. Computational Mechanics, 34( 5), 410-422. doi:10.1007/s00466-004-0586-9
    • NLM

      Greco M, Coda HB, Venturini WS. An alternative contact/impact identification algorithm for 2d structural problems [Internet]. Computational Mechanics. 2004 ; 34( 5): 410-422.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-004-0586-9
    • Vancouver

      Greco M, Coda HB, Venturini WS. An alternative contact/impact identification algorithm for 2d structural problems [Internet]. Computational Mechanics. 2004 ; 34( 5): 410-422.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-004-0586-9
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS FINITOS, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Felício Bruzzi e PROENÇA, Sérgio Persival Baroncini e BARCELLOS, Clovis Sperb de. Generalized finite element method in structural nonlinear analysis: a p-adaptive strategy. Computational Mechanics, v. 33, n. Ja 2004, p. 95-107, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00466-003-0503-7. Acesso em: 31 out. 2024.
    • APA

      Barros, F. B., Proença, S. P. B., & Barcellos, C. S. de. (2004). Generalized finite element method in structural nonlinear analysis: a p-adaptive strategy. Computational Mechanics, 33( Ja 2004), 95-107. doi:10.1007/s00466-003-0503-7
    • NLM

      Barros FB, Proença SPB, Barcellos CS de. Generalized finite element method in structural nonlinear analysis: a p-adaptive strategy [Internet]. Computational Mechanics. 2004 ; 33( Ja 2004): 95-107.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-003-0503-7
    • Vancouver

      Barros FB, Proença SPB, Barcellos CS de. Generalized finite element method in structural nonlinear analysis: a p-adaptive strategy [Internet]. Computational Mechanics. 2004 ; 33( Ja 2004): 95-107.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s00466-003-0503-7
  • Source: Computational Mechanics. Conference titles: Symposium of the International Association for Boundary Element Methods. Unidade: EESC

    Subjects: ANÁLISE NUMÉRICA, MÉTODO DOS ELEMENTOS FINITOS, PLACAS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Gabriela Rezende e VENTURINI, Wilson Sérgio. Stiffened plate bending analysis by the boundary element method. Computational Mechanics. Belfast: Escola de Engenharia de São Carlos, Universidade de São Paulo. . Acesso em: 31 out. 2024. , 2002
    • APA

      Fernandes, G. R., & Venturini, W. S. (2002). Stiffened plate bending analysis by the boundary element method. Computational Mechanics. Belfast: Escola de Engenharia de São Carlos, Universidade de São Paulo.
    • NLM

      Fernandes GR, Venturini WS. Stiffened plate bending analysis by the boundary element method. Computational Mechanics. 2002 ; 28( 3-4): 275-281.[citado 2024 out. 31 ]
    • Vancouver

      Fernandes GR, Venturini WS. Stiffened plate bending analysis by the boundary element method. Computational Mechanics. 2002 ; 28( 3-4): 275-281.[citado 2024 out. 31 ]
  • Source: Computational Mechanics. Unidade: EESC

    Subjects: MÉTODO DOS ELEMENTOS DE CONTORNO, PLACAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAIVA, João Batista de e ALIABADI, Mohammad Hossien. Boundary element analysis of zoned plates in bending. Computational Mechanics, v. 25, n. 6, p. 560-566, 2000Tradução . . Disponível em: https://doi.org/10.1007/s004660050503. Acesso em: 31 out. 2024.
    • APA

      Paiva, J. B. de, & Aliabadi, M. H. (2000). Boundary element analysis of zoned plates in bending. Computational Mechanics, 25( 6), 560-566. doi:10.1007/s004660050503
    • NLM

      Paiva JB de, Aliabadi MH. Boundary element analysis of zoned plates in bending [Internet]. Computational Mechanics. 2000 ; 25( 6): 560-566.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s004660050503
    • Vancouver

      Paiva JB de, Aliabadi MH. Boundary element analysis of zoned plates in bending [Internet]. Computational Mechanics. 2000 ; 25( 6): 560-566.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s004660050503
  • Source: Computational Mechanics. Unidade: EP

    Subjects: MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, ENGENHARIA MECÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Emílio Carlos Nelli e FONSECA, J. S. O. e KIKUCHI, N. Optimal design of piezoelectric microstructures. Computational Mechanics, v. 19, n. 5, p. 397-409, 1997Tradução . . Disponível em: https://doi.org/10.1007/s004660050188. Acesso em: 31 out. 2024.
    • APA

      Silva, E. C. N., Fonseca, J. S. O., & Kikuchi, N. (1997). Optimal design of piezoelectric microstructures. Computational Mechanics, 19( 5), 397-409. doi:10.1007/s004660050188
    • NLM

      Silva ECN, Fonseca JSO, Kikuchi N. Optimal design of piezoelectric microstructures [Internet]. Computational Mechanics. 1997 ; 19( 5): 397-409.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s004660050188
    • Vancouver

      Silva ECN, Fonseca JSO, Kikuchi N. Optimal design of piezoelectric microstructures [Internet]. Computational Mechanics. 1997 ; 19( 5): 397-409.[citado 2024 out. 31 ] Available from: https://doi.org/10.1007/s004660050188

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024