Filtros : "Singapura" "2015" "IF-FMA" Limpar

Filtros



Refine with date range


  • Source: INTERNATIONAL JOURNAL OF MODERN PHYSICS D. Unidade: IF

    Subjects: SUPERCONDUTIVIDADE, HOLOGRAFIA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIN, Kai e WANG, Anzhong e ABDALLA, Élcio. Holographic superconductors in Hořava–Lifshitz gravity. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, v. 24, n. 6, p. 1550038, 2015Tradução . . Disponível em: https://doi.org/10.1142/s0218271815500388. Acesso em: 31 out. 2024.
    • APA

      Lin, K., Wang, A., & Abdalla, É. (2015). Holographic superconductors in Hořava–Lifshitz gravity. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 24( 6), 1550038. doi:10.1142/s0218271815500388
    • NLM

      Lin K, Wang A, Abdalla É. Holographic superconductors in Hořava–Lifshitz gravity [Internet]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D. 2015 ; 24( 6): 1550038.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/s0218271815500388
    • Vancouver

      Lin K, Wang A, Abdalla É. Holographic superconductors in Hořava–Lifshitz gravity [Internet]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D. 2015 ; 24( 6): 1550038.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/s0218271815500388
  • Source: INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. Unidade: IF

    Subjects: MECÂNICA QUÂNTICA, CAMPO MAGNÉTICO

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KALAUNI, Pushpa e BARATA, João Carlos Alves. Reconstruction of symmetric Dirac–Maxwell equations using nonassociative algebra. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, v. 12, n. 3, p. 1550029, 2015Tradução . . Disponível em: https://doi.org/10.1142/s0219887815500292. Acesso em: 31 out. 2024.
    • APA

      Kalauni, P., & Barata, J. C. A. (2015). Reconstruction of symmetric Dirac–Maxwell equations using nonassociative algebra. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 12( 3), 1550029. doi:10.1142/s0219887815500292
    • NLM

      Kalauni P, Barata JCA. Reconstruction of symmetric Dirac–Maxwell equations using nonassociative algebra [Internet]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. 2015 ; 12( 3): 1550029.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/s0219887815500292
    • Vancouver

      Kalauni P, Barata JCA. Reconstruction of symmetric Dirac–Maxwell equations using nonassociative algebra [Internet]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS. 2015 ; 12( 3): 1550029.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/s0219887815500292
  • Source: MODERN PHYSICS LETTERS A. Unidade: IF

    Subjects: TEORIA DE GAUGE, CAMPO MAGNÉTICO

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KALAUNI, Pushpa e BARATA, João Carlos Alves. Role of division algebra in seven-dimensional gauge theory. MODERN PHYSICS LETTERS A, v. 30, n. 10, p. 1550047, 2015Tradução . . Disponível em: https://doi.org/10.1142/s0217732315500479. Acesso em: 31 out. 2024.
    • APA

      Kalauni, P., & Barata, J. C. A. (2015). Role of division algebra in seven-dimensional gauge theory. MODERN PHYSICS LETTERS A, 30( 10), 1550047. doi:10.1142/s0217732315500479
    • NLM

      Kalauni P, Barata JCA. Role of division algebra in seven-dimensional gauge theory [Internet]. MODERN PHYSICS LETTERS A. 2015 ; 30( 10): 1550047.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/s0217732315500479
    • Vancouver

      Kalauni P, Barata JCA. Role of division algebra in seven-dimensional gauge theory [Internet]. MODERN PHYSICS LETTERS A. 2015 ; 30( 10): 1550047.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/s0217732315500479
  • Source: MODERN PHYSICS LETTERS A. Unidade: IF

    Subjects: FÍSICA NUCLEAR, FÍSICA TEÓRICA

    Versão PublicadaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAS, Ashok K. e FRENKEL, Josif. Derivation of the fluctuation–dissipation theorem from unitarity. MODERN PHYSICS LETTERS A, v. 30, n. 32, p. 1550163, 2015Tradução . . Disponível em: https://doi.org/10.1142/S0217732315501631. Acesso em: 31 out. 2024.
    • APA

      Das, A. K., & Frenkel, J. (2015). Derivation of the fluctuation–dissipation theorem from unitarity. MODERN PHYSICS LETTERS A, 30( 32), 1550163. doi:10.1142/S0217732315501631
    • NLM

      Das AK, Frenkel J. Derivation of the fluctuation–dissipation theorem from unitarity. [Internet]. MODERN PHYSICS LETTERS A. 2015 ; 30( 32): 1550163.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0217732315501631
    • Vancouver

      Das AK, Frenkel J. Derivation of the fluctuation–dissipation theorem from unitarity. [Internet]. MODERN PHYSICS LETTERS A. 2015 ; 30( 32): 1550163.[citado 2024 out. 31 ] Available from: https://doi.org/10.1142/S0217732315501631

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024