Filtros : "Alemanha" "EESC" "Martins, Emiliano Rezende" Limpar

Filtros



Refine with date range


  • Source: Advanced Optical Materials. Unidade: EESC

    Subjects: ANÁLISE DE FOURIER, FOTÔNICA, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRUDA, Guilherme S. et al. Fourier control of air modes in high-Q metasurfaces. Advanced Optical Materials, 2023Tradução . . Disponível em: http://dx.doi.org/10.1002/adom.202301563. Acesso em: 03 out. 2024.
    • APA

      Arruda, G. S., Pepino, V. M., Borges, B. -H. V., & Martins, E. R. (2023). Fourier control of air modes in high-Q metasurfaces. Advanced Optical Materials. doi:10.1002/adom.202301563
    • NLM

      Arruda GS, Pepino VM, Borges B-HV, Martins ER. Fourier control of air modes in high-Q metasurfaces [Internet]. Advanced Optical Materials. 2023 ;[citado 2024 out. 03 ] Available from: http://dx.doi.org/10.1002/adom.202301563
    • Vancouver

      Arruda GS, Pepino VM, Borges B-HV, Martins ER. Fourier control of air modes in high-Q metasurfaces [Internet]. Advanced Optical Materials. 2023 ;[citado 2024 out. 03 ] Available from: http://dx.doi.org/10.1002/adom.202301563
  • Source: Nanophotonics. Unidade: EESC

    Subjects: ÓPTICA, FOCALIZAÇÃO FOTOGRÁFICA, LENTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Augusto et al. Fundamental limits and design principles of doublet metalenses. Nanophotonics, v. 11, n. 6, p. 1187-1194, 2022Tradução . . Disponível em: https://doi.org/10.1515/nanoph-2021-0770. Acesso em: 03 out. 2024.
    • APA

      Martins, A., Juntao, L., Borges, B. -H. V., Krauss, T. F., & Martins, E. R. (2022). Fundamental limits and design principles of doublet metalenses. Nanophotonics, 11( 6), 1187-1194. doi:10.1515/nanoph-2021-0770
    • NLM

      Martins A, Juntao L, Borges B-HV, Krauss TF, Martins ER. Fundamental limits and design principles of doublet metalenses [Internet]. Nanophotonics. 2022 ; 11( 6): 1187-1194.[citado 2024 out. 03 ] Available from: https://doi.org/10.1515/nanoph-2021-0770
    • Vancouver

      Martins A, Juntao L, Borges B-HV, Krauss TF, Martins ER. Fundamental limits and design principles of doublet metalenses [Internet]. Nanophotonics. 2022 ; 11( 6): 1187-1194.[citado 2024 out. 03 ] Available from: https://doi.org/10.1515/nanoph-2021-0770
  • Source: Advanced Optical Materials. Unidade: EESC

    Subjects: ÓPTICA, MATERIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTINS, Augusto et al. Correction of aberrations via polarization in single layer metalenses. Advanced Optical Materials. Weinheim, Germany: Wiley-VCH Verlag. Disponível em: https://doi.org/10.1002/adom.202102555. Acesso em: 03 out. 2024. , 2022
    • APA

      Martins, A., Kezheng, L., Arruda, G. S., Conteduca, D., Haowen, L., Juntao, L., et al. (2022). Correction of aberrations via polarization in single layer metalenses. Advanced Optical Materials. Weinheim, Germany: Wiley-VCH Verlag. doi:10.1002/adom.202102555
    • NLM

      Martins A, Kezheng L, Arruda GS, Conteduca D, Haowen L, Juntao L, Borges B-HV, Krauss TF, Martins ER. Correction of aberrations via polarization in single layer metalenses [Internet]. Advanced Optical Materials. 2022 ;[citado 2024 out. 03 ] Available from: https://doi.org/10.1002/adom.202102555
    • Vancouver

      Martins A, Kezheng L, Arruda GS, Conteduca D, Haowen L, Juntao L, Borges B-HV, Krauss TF, Martins ER. Correction of aberrations via polarization in single layer metalenses [Internet]. Advanced Optical Materials. 2022 ;[citado 2024 out. 03 ] Available from: https://doi.org/10.1002/adom.202102555
  • Source: Laser and Photonics Reviews. Unidade: EESC

    Assunto: ENGENHARIA ELÉTRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIANCHAO, Zhang et al. Metalenses with polarization-insensitive adaptive nano-antennas. Laser and Photonics Reviews, p. 1-8, 2022Tradução . . Disponível em: https://doi.org/10.1002/lpor.202200268. Acesso em: 03 out. 2024.
    • APA

      Jianchao, Z., Haowen, L., Yong, L., Yongle, Z., Qian, S., Qinfei, W., et al. (2022). Metalenses with polarization-insensitive adaptive nano-antennas. Laser and Photonics Reviews, 1-8. doi:10.1002/lpor.202200268
    • NLM

      Jianchao Z, Haowen L, Yong L, Yongle Z, Qian S, Qinfei W, Xiao F, Martins ER, Krauss TF, Juntao L, Xue-Hua W. Metalenses with polarization-insensitive adaptive nano-antennas [Internet]. Laser and Photonics Reviews. 2022 ; 1-8.[citado 2024 out. 03 ] Available from: https://doi.org/10.1002/lpor.202200268
    • Vancouver

      Jianchao Z, Haowen L, Yong L, Yongle Z, Qian S, Qinfei W, Xiao F, Martins ER, Krauss TF, Juntao L, Xue-Hua W. Metalenses with polarization-insensitive adaptive nano-antennas [Internet]. Laser and Photonics Reviews. 2022 ; 1-8.[citado 2024 out. 03 ] Available from: https://doi.org/10.1002/lpor.202200268
  • Source: Advanced Optical Materials. Unidade: EESC

    Subjects: FOTÔNICA, SILÍCIO, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QIAN, Sun et al. Highly efficient air-mode silicon metasurfaces for visible light operation embedded in a protective silica layer. Advanced Optical Materials, v. 9, n. 11, p. 1-5, 2021Tradução . . Disponível em: http://dx.doi.org/10.1002/adom.202002209. Acesso em: 03 out. 2024.
    • APA

      Qian, S., Haowen, L., Jianchao, Z., Weibin, F., Martins, E. R., Krauss, T. F., & Juntao, L. (2021). Highly efficient air-mode silicon metasurfaces for visible light operation embedded in a protective silica layer. Advanced Optical Materials, 9( 11), 1-5. doi:10.1002/adom.202002209
    • NLM

      Qian S, Haowen L, Jianchao Z, Weibin F, Martins ER, Krauss TF, Juntao L. Highly efficient air-mode silicon metasurfaces for visible light operation embedded in a protective silica layer [Internet]. Advanced Optical Materials. 2021 ; 9( 11): 1-5.[citado 2024 out. 03 ] Available from: http://dx.doi.org/10.1002/adom.202002209
    • Vancouver

      Qian S, Haowen L, Jianchao Z, Weibin F, Martins ER, Krauss TF, Juntao L. Highly efficient air-mode silicon metasurfaces for visible light operation embedded in a protective silica layer [Internet]. Advanced Optical Materials. 2021 ; 9( 11): 1-5.[citado 2024 out. 03 ] Available from: http://dx.doi.org/10.1002/adom.202002209
  • Source: Nanophotonics. Unidade: EESC

    Subjects: FOTÔNICA, SENSORES ÓPTICOS, ENGENHARIA ELÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUFFETT, George et al. Metal-insulator-metal nanoresonators: strongly confined modes for high surface sensitivity. Nanophotonics, v. 9, n. 6, p. 1547-1552, 2020Tradução . . Disponível em: https://dx.doi.org/10.1515/nanoph-2020-0199. Acesso em: 03 out. 2024.
    • APA

      Duffett, G., Wirth, R., Rayer, M., Martins, E. R., & Krauss, T. F. (2020). Metal-insulator-metal nanoresonators: strongly confined modes for high surface sensitivity. Nanophotonics, 9( 6), 1547-1552. doi:10.1515/nanoph-2020-0199
    • NLM

      Duffett G, Wirth R, Rayer M, Martins ER, Krauss TF. Metal-insulator-metal nanoresonators: strongly confined modes for high surface sensitivity [Internet]. Nanophotonics. 2020 ; 9( 6): 1547-1552.[citado 2024 out. 03 ] Available from: https://dx.doi.org/10.1515/nanoph-2020-0199
    • Vancouver

      Duffett G, Wirth R, Rayer M, Martins ER, Krauss TF. Metal-insulator-metal nanoresonators: strongly confined modes for high surface sensitivity [Internet]. Nanophotonics. 2020 ; 9( 6): 1547-1552.[citado 2024 out. 03 ] Available from: https://dx.doi.org/10.1515/nanoph-2020-0199

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024