Filtros : "EBERT, MARCELO REMPEL" "Birkhäuser" Removido: "CIÊNCIA DA COMPUTAÇÃO" Limpar

Filtros



Refine with date range


  • Source: New tools for nonlinear PDEs and application. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e LOURENÇO, Linniker Monteiro. The critical exponent for evolution models with power non-linearity. New tools for nonlinear PDEs and application. Tradução . Cham: Birkhäuser, 2019. . Disponível em: https://doi.org/10.1007/978-3-030-10937-0_5. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Lourenço, L. M. (2019). The critical exponent for evolution models with power non-linearity. In New tools for nonlinear PDEs and application. Cham: Birkhäuser. doi:10.1007/978-3-030-10937-0_5
    • NLM

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
    • Vancouver

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
  • Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      New tools for nonlinear PDEs and application. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-030-10937-0. Acesso em: 19 nov. 2024. , 2019
    • APA

      New tools for nonlinear PDEs and application. (2019). New tools for nonlinear PDEs and application. Cham: Birkhäuser. doi:10.1007/978-3-030-10937-0
    • NLM

      New tools for nonlinear PDEs and application [Internet]. 2019 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0
    • Vancouver

      New tools for nonlinear PDEs and application [Internet]. 2019 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-030-10937-0
  • Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. . Cham: Birkhäuser. Disponível em: https://doi.org/10.1007/978-3-319-66456-9. Acesso em: 19 nov. 2024. , 2018
    • APA

      Ebert, M. R., & Reissig, M. (2018). Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models. Cham: Birkhäuser. doi:10.1007/978-3-319-66456-9
    • NLM

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9
    • Vancouver

      Ebert MR, Reissig M. Methods for partial differential equations: qualitative properties of solutions, phase space analysis, semilinear models [Internet]. 2018 ;[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/978-3-319-66456-9

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024