Filtros : "EBERT, MARCELO REMPEL" "Universidade Federal de São Carlos (UFSCar)" Removido: "Indexado no: Compendex" Limpar

Filtros



Refine with date range


  • Source: New tools for nonlinear PDEs and application. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e LOURENÇO, Linniker Monteiro. The critical exponent for evolution models with power non-linearity. New tools for nonlinear PDEs and application. Tradução . Cham: Birkhäuser, 2019. . Disponível em: https://doi.org/10.1007/978-3-030-10937-0_5. Acesso em: 07 nov. 2024.
    • APA

      Ebert, M. R., & Lourenço, L. M. (2019). The critical exponent for evolution models with power non-linearity. In New tools for nonlinear PDEs and application. Cham: Birkhäuser. doi:10.1007/978-3-030-10937-0_5
    • NLM

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
    • Vancouver

      Ebert MR, Lourenço LM. The critical exponent for evolution models with power non-linearity [Internet]. In: New tools for nonlinear PDEs and application. Cham: Birkhäuser; 2019. [citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/978-3-030-10937-0_5
  • Source: Annali di Matematica Pura ed Applicata. Unidade: FFCLRP

    Subjects: EQUAÇÕES DA ONDA, MATEMÁTICA, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e KAPP, R. A. e PICON, Tiago Henrique. L1–Lp estimates for radial solutions of the wave equation and application. Annali di Matematica Pura ed Applicata, v. 195, n. 4, p. 1081-1091, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10231-015-0505-z. Acesso em: 07 nov. 2024.
    • APA

      Ebert, M. R., Kapp, R. A., & Picon, T. H. (2016). L1–Lp estimates for radial solutions of the wave equation and application. Annali di Matematica Pura ed Applicata, 195( 4), 1081-1091. doi:10.1007/s10231-015-0505-z
    • NLM

      Ebert MR, Kapp RA, Picon TH. L1–Lp estimates for radial solutions of the wave equation and application [Internet]. Annali di Matematica Pura ed Applicata. 2016 ; 195( 4): 1081-1091.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s10231-015-0505-z
    • Vancouver

      Ebert MR, Kapp RA, Picon TH. L1–Lp estimates for radial solutions of the wave equation and application [Internet]. Annali di Matematica Pura ed Applicata. 2016 ; 195( 4): 1081-1091.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1007/s10231-015-0505-z
  • Source: Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel et al. Klein-Gordon type wave models with non-effective time-dependent potential. Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Tradução . Cottenham: Cambridge Scientific Publishers, 2014. . . Acesso em: 07 nov. 2024.
    • APA

      Ebert, M. R., Kapp, R. A., Nascimento, W. N., & Reissig, M. (2014). Klein-Gordon type wave models with non-effective time-dependent potential. In Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Cottenham: Cambridge Scientific Publishers.
    • NLM

      Ebert MR, Kapp RA, Nascimento WN, Reissig M. Klein-Gordon type wave models with non-effective time-dependent potential. In: Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Cottenham: Cambridge Scientific Publishers; 2014. [citado 2024 nov. 07 ]
    • Vancouver

      Ebert MR, Kapp RA, Nascimento WN, Reissig M. Klein-Gordon type wave models with non-effective time-dependent potential. In: Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Cottenham: Cambridge Scientific Publishers; 2014. [citado 2024 nov. 07 ]
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Assunto: FUNÇÕES HIPERBÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e KAPP, R. A. e SANTOS FILHO, José Ruidival dos. On the loss of regulatory for a class of weakly hyperbolic operators. Journal of Mathematical Analysis and Applications, v. 359, n. 1, p. 181-196, 2009Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2009.05.026. Acesso em: 07 nov. 2024.
    • APA

      Ebert, M. R., Kapp, R. A., & Santos Filho, J. R. dos. (2009). On the loss of regulatory for a class of weakly hyperbolic operators. Journal of Mathematical Analysis and Applications, 359( 1), 181-196. doi:10.1016/j.jmaa.2009.05.026
    • NLM

      Ebert MR, Kapp RA, Santos Filho JR dos. On the loss of regulatory for a class of weakly hyperbolic operators [Internet]. Journal of Mathematical Analysis and Applications. 2009 ; 359( 1): 181-196.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jmaa.2009.05.026
    • Vancouver

      Ebert MR, Kapp RA, Santos Filho JR dos. On the loss of regulatory for a class of weakly hyperbolic operators [Internet]. Journal of Mathematical Analysis and Applications. 2009 ; 359( 1): 181-196.[citado 2024 nov. 07 ] Available from: https://doi.org/10.1016/j.jmaa.2009.05.026
  • Unidade: FFCLRP

    Subjects: PROBLEMA DE CAUCHY, OPERADORES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e SANTOS FILHO, José Ruidival dos. Problema de Cauchy para operadores diferenciais parciais. . Rio de Janeiro: Impa. . Acesso em: 07 nov. 2024. , 2009
    • APA

      Ebert, M. R., & Santos Filho, J. R. dos. (2009). Problema de Cauchy para operadores diferenciais parciais. Rio de Janeiro: Impa.
    • NLM

      Ebert MR, Santos Filho JR dos. Problema de Cauchy para operadores diferenciais parciais. 2009 ;[citado 2024 nov. 07 ]
    • Vancouver

      Ebert MR, Santos Filho JR dos. Problema de Cauchy para operadores diferenciais parciais. 2009 ;[citado 2024 nov. 07 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024