Filtros : "EBERT, MARCELO REMPEL" "Alemanha" Removidos: "EQUAÇÕES DIFERENCIAIS PARCIAIS LINEARES" "TEORIA DAS EQUAÇÕES" Limpar

Filtros



Refine with date range


  • Source: Differential and Integral Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA DA COMPUTAÇÃO, MASSA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASLAN, Halit Sevki e EBERT, Marcelo Rempel e REISSIG, Michael. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, v. 36, n. 5/6, p. 453-490, 2023Tradução . . Disponível em: https://doi.org/10.57262/die036-0506-453. Acesso em: 19 nov. 2024.
    • APA

      Aslan, H. S., Ebert, M. R., & Reissig, M. (2023). Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation. Differential and Integral Equations, 36( 5/6), 453-490. doi:10.57262/die036-0506-453
    • NLM

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 19 ] Available from: https://doi.org/10.57262/die036-0506-453
    • Vancouver

      Aslan HS, Ebert MR, Reissig M. Scale-invariant semilinear damped wave models with mass term and integrable in time speed of propagation [Internet]. Differential and Integral Equations. 2023 ; 36( 5/6): 453-490.[citado 2024 nov. 19 ] Available from: https://doi.org/10.57262/die036-0506-453
  • Source: Resumo. Conference titles: ISAAC Congress. Unidade: FFCLRP

    Subjects: MATEMÁTICA, MODELOS MATEMÁTICOS, PROBLEMA DE CAUCHY

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REISSIG, Michael e EBERT, Marcelo Rempel. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. 2023, Anais.. Ribeirão Preto: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2023. Disponível em: https://dcm.ffclrp.usp.br/isaac/. Acesso em: 19 nov. 2024.
    • APA

      Reissig, M., & Ebert, M. R. (2023). Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. In Resumo. Ribeirão Preto: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Recuperado de https://dcm.ffclrp.usp.br/isaac/
    • NLM

      Reissig M, Ebert MR. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Resumo. 2023 ;[citado 2024 nov. 19 ] Available from: https://dcm.ffclrp.usp.br/isaac/
    • Vancouver

      Reissig M, Ebert MR. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Resumo. 2023 ;[citado 2024 nov. 19 ] Available from: https://dcm.ffclrp.usp.br/isaac/
  • Source: Nonlinear Analysis: Real World Applications. Unidade: FFCLRP

    Subjects: PROBLEMA DE CAUCHY, MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, v. 71, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2023.103835. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2023). A note to semilinear de Sitter models in 1d with balanced mass and dissipation. Nonlinear Analysis: Real World Applications, 71. doi:10.1016/j.nonrwa.2023.103835
    • NLM

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
    • Vancouver

      Ebert MR, Reissig M. A note to semilinear de Sitter models in 1d with balanced mass and dissipation [Internet]. Nonlinear Analysis: Real World Applications. 2023 ; 71[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2023.103835
  • Source: Mathematische Annalen. Unidade: FFCLRP

    Subjects: MODELOS MATEMÁTICOS, EQUAÇÕES ALGÉBRICAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e GIRARDI, G. e REISSIG, Michael. Critical regularity of nonlinearities in semilinear classical damped wave equations. Mathematische Annalen, v. 378, p. 1311-1326, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00208-019-01921-5. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Girardi, G., & Reissig, M. (2020). Critical regularity of nonlinearities in semilinear classical damped wave equations. Mathematische Annalen, 378, 1311-1326. doi:10.1007/s00208-019-01921-5
    • NLM

      Ebert MR, Girardi G, Reissig M. Critical regularity of nonlinearities in semilinear classical damped wave equations [Internet]. Mathematische Annalen. 2020 ; 378 1311-1326.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00208-019-01921-5
    • Vancouver

      Ebert MR, Girardi G, Reissig M. Critical regularity of nonlinearities in semilinear classical damped wave equations [Internet]. Mathematische Annalen. 2020 ; 378 1311-1326.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1007/s00208-019-01921-5
  • Source: Nonlinear Analysis : Real World Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, ANÁLISE NÃO LINEAR DE ESTRUTURAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, v. 40, p. 14-54, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2017.08.009. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2018). Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity. Nonlinear Analysis : Real World Applications, 40, 14-54. doi:10.1016/j.nonrwa.2017.08.009
    • NLM

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2017.08.009
    • Vancouver

      Ebert MR, Reissig M. Regularity theory and global existence of small data solutions to semi-linear de Sitter models with power non-linearity [Internet]. Nonlinear Analysis : Real World Applications. 2018 ; 40 14-54.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.nonrwa.2017.08.009
  • Source: Journal of Hyperbolic Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MODELOS DE ONDAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, v. 13, n. 2, p. 417-439, 2016Tradução . . Disponível em: https://doi.org/10.1142/s0219891616500132. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2016). Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, 13( 2), 417-439. doi:10.1142/s0219891616500132
    • NLM

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1142/s0219891616500132
    • Vancouver

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1142/s0219891616500132

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024