Filtros : "EBERT, MARCELO REMPEL" "EQUAÇÕES DIFERENCIAIS" Removido: "Indexado no : INSPEC" Limpar

Filtros



Refine with date range


  • Source: Abstracts. Conference titles: Summer Meeting on Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, OPERADORES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel. Asymptotic profiles for a damped plate equation with time-dependent coefficients. 2019, Anais.. São Carlos: ICMC-USP, 2019. Disponível em: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R. (2019). Asymptotic profiles for a damped plate equation with time-dependent coefficients. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf
    • NLM

      Ebert MR. Asymptotic profiles for a damped plate equation with time-dependent coefficients [Internet]. Abstracts. 2019 ;[citado 2024 nov. 19 ] Available from: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf
    • Vancouver

      Ebert MR. Asymptotic profiles for a damped plate equation with time-dependent coefficients [Internet]. Abstracts. 2019 ;[citado 2024 nov. 19 ] Available from: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf
  • Source: Advances in Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e NASCIMENTO, Wanderley Nunes do. A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, v. 23, n. 11-12, p. 847-888, 2017Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Nascimento, W. N. do. (2017). A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, 23( 11-12), 847-888. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • NLM

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • Vancouver

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
  • Source: Journal of Hyperbolic Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MODELOS DE ONDAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, v. 13, n. 2, p. 417-439, 2016Tradução . . Disponível em: https://doi.org/10.1142/s0219891616500132. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2016). Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, 13( 2), 417-439. doi:10.1142/s0219891616500132
    • NLM

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1142/s0219891616500132
    • Vancouver

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1142/s0219891616500132
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e FITRIANA, Laila e HIROSAWA, Fumihiko. On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions. Journal of Mathematical Analysis and Applications, v. 432, n. 2, p. 654-677, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.06.051. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Fitriana, L., & Hirosawa, F. (2015). On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions. Journal of Mathematical Analysis and Applications, 432( 2), 654-677. doi:10.1016/j.jmaa.2015.06.051
    • NLM

      Ebert MR, Fitriana L, Hirosawa F. On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 432( 2): 654-677.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2015.06.051
    • Vancouver

      Ebert MR, Fitriana L, Hirosawa F. On the energy estimates of the wave equation with time dependent propagation speed asymptotically monotone functions [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 432( 2): 654-677.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1016/j.jmaa.2015.06.051
  • Source: Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MATEMÁTICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel et al. Klein-Gordon type wave models with non-effective time-dependent potential. Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Tradução . Cottenham: Cambridge Scientific Publishers, 2014. . . Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., Kapp, R. A., Nascimento, W. N., & Reissig, M. (2014). Klein-Gordon type wave models with non-effective time-dependent potential. In Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Cottenham: Cambridge Scientific Publishers.
    • NLM

      Ebert MR, Kapp RA, Nascimento WN, Reissig M. Klein-Gordon type wave models with non-effective time-dependent potential. In: Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Cottenham: Cambridge Scientific Publishers; 2014. [citado 2024 nov. 19 ]
    • Vancouver

      Ebert MR, Kapp RA, Nascimento WN, Reissig M. Klein-Gordon type wave models with non-effective time-dependent potential. In: Analytic method of analysis and Differential equations: AMADE 2012 (Paperback). Cottenham: Cambridge Scientific Publishers; 2014. [citado 2024 nov. 19 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024