Filtros : "EBERT, MARCELO REMPEL" "Indexado no Science Citation Index Expanded" Removido: "Universidade Federal de São Carlos (UFSCar)" Limpar

Filtros



Refine with date range


  • Source: Advances in Differential Equations. Unidade: FFCLRP

    Assunto: EQUAÇÕES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e NASCIMENTO, Wanderley Nunes do. A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, v. 23, n. 11-12, p. 847-888, 2017Tradução . . Disponível em: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Nascimento, W. N. do. (2017). A classification for wave models with time-dependent potential and speed of propagation. Advances in Differential Equations, 23( 11-12), 847-888. Recuperado de https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • NLM

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
    • Vancouver

      Ebert MR, Nascimento WN do. A classification for wave models with time-dependent potential and speed of propagation [Internet]. Advances in Differential Equations. 2017 ; 23( 11-12): 847-888.[citado 2024 nov. 19 ] Available from: https://projecteuclid.org/download/pdf_1/euclid.ade/1537840835
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FFCLRP

    Subjects: EQUAÇÕES DE EVOLUÇÃO, EQUAÇÕES NÃO LINEARES, PROBLEMA DE CAUCHY, MATEMÁTICA APLICADA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'ABBICCO, M. e EBERT, Marcelo Rempel e LUCENTE, S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation. Mathematical Methods in the Applied Sciences, v. 40, p. 6480-6494, 2017Tradução . . Disponível em: https://doi.org/10.1002/mma.4469. Acesso em: 19 nov. 2024.
    • APA

      D'Abbicco, M., Ebert, M. R., & Lucente, S. (2017). Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation. Mathematical Methods in the Applied Sciences, 40, 6480-6494. doi:10.1002/mma.4469
    • NLM

      D'Abbicco M, Ebert MR, Lucente S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40 6480-6494.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1002/mma.4469
    • Vancouver

      D'Abbicco M, Ebert MR, Lucente S. Self‐similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation [Internet]. Mathematical Methods in the Applied Sciences. 2017 ; 40 6480-6494.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1002/mma.4469
  • Source: Journal of Hyperbolic Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MODELOS DE ONDAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBERT, Marcelo Rempel e REISSIG, Michael. Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, v. 13, n. 2, p. 417-439, 2016Tradução . . Disponível em: https://doi.org/10.1142/s0219891616500132. Acesso em: 19 nov. 2024.
    • APA

      Ebert, M. R., & Reissig, M. (2016). Theory of damped wave models with integrable and decaying in time speed of propagation. Journal of Hyperbolic Differential Equations, 13( 2), 417-439. doi:10.1142/s0219891616500132
    • NLM

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1142/s0219891616500132
    • Vancouver

      Ebert MR, Reissig M. Theory of damped wave models with integrable and decaying in time speed of propagation [Internet]. Journal of Hyperbolic Differential Equations. 2016 ; 13( 2): 417-439.[citado 2024 nov. 19 ] Available from: https://doi.org/10.1142/s0219891616500132

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024