Source: PLOS ONE. Unidades: FMVZ, FSP
Subjects: DENGUE, VÍRUS DA DENGUE, MODELOS (ANÁLISE MULTIVARIADA), FATORES DE RISCO
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BAQUERO, Oswaldo Santos e SANTANA, Lidia Maria Reis e CHIARAVALLOTI NETO, Francisco. Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLOS ONE, v. 13, n. 4, p. e0195065 [12 ], 2018Tradução . . Disponível em: https://doi.org/10.1371/journal.pone.0195065. Acesso em: 05 nov. 2024.APA
Baquero, O. S., Santana, L. M. R., & Chiaravalloti Neto, F. (2018). Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLOS ONE, 13( 4), e0195065 [12 ]. doi:10.1371/journal.pone.0195065NLM
Baquero OS, Santana LMR, Chiaravalloti Neto F. Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models [Internet]. PLOS ONE. 2018 ; 13( 4): e0195065 [12 ].[citado 2024 nov. 05 ] Available from: https://doi.org/10.1371/journal.pone.0195065Vancouver
Baquero OS, Santana LMR, Chiaravalloti Neto F. Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models [Internet]. PLOS ONE. 2018 ; 13( 4): e0195065 [12 ].[citado 2024 nov. 05 ] Available from: https://doi.org/10.1371/journal.pone.0195065