Filtros : "TERMODINÂMICA" "Indexado na Web of Science sem fator" Removido: "Brazilian Meeting on Simulational Physics" Limpar

Filtros



Refine with date range


  • Source: Computational Condensed Matter. Unidade: IFSC

    Subjects: MÉTODO DE MONTE CARLO, TERMODINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, B. G. A. et al. Path-integral Monte Carlo simulations on the thermodynamic properties of single-layer hexagonal boron nitride. Computational Condensed Matter, v. 31, p. e00660-1-e00660-7, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cocom.2022.e00660. Acesso em: 03 nov. 2025.
    • APA

      Brito, B. G. A., Cândido, L., Rabelo, J. N. T., & Hai, G. -Q. (2022). Path-integral Monte Carlo simulations on the thermodynamic properties of single-layer hexagonal boron nitride. Computational Condensed Matter, 31, e00660-1-e00660-7. doi:10.1016/j.cocom.2022.e00660
    • NLM

      Brito BGA, Cândido L, Rabelo JNT, Hai G-Q. Path-integral Monte Carlo simulations on the thermodynamic properties of single-layer hexagonal boron nitride [Internet]. Computational Condensed Matter. 2022 ; 31 e00660-1-e00660-7.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1016/j.cocom.2022.e00660
    • Vancouver

      Brito BGA, Cândido L, Rabelo JNT, Hai G-Q. Path-integral Monte Carlo simulations on the thermodynamic properties of single-layer hexagonal boron nitride [Internet]. Computational Condensed Matter. 2022 ; 31 e00660-1-e00660-7.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1016/j.cocom.2022.e00660
  • Source: Computational Condensed Matter. Unidade: IFSC

    Subjects: MÉTODO DE MONTE CARLO, TERMODINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, B. G. A. e HAI, Guo-Qiang e CÂNDIDO, L. Quantum effects on the elastic properties of cubic boron nitride by path-integral Monte Carlo simulation. Computational Condensed Matter, v. 33, p. e00759-1-e00759-7, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cocom.2022.e00759. Acesso em: 03 nov. 2025.
    • APA

      Brito, B. G. A., Hai, G. -Q., & Cândido, L. (2022). Quantum effects on the elastic properties of cubic boron nitride by path-integral Monte Carlo simulation. Computational Condensed Matter, 33, e00759-1-e00759-7. doi:10.1016/j.cocom.2022.e00759
    • NLM

      Brito BGA, Hai G-Q, Cândido L. Quantum effects on the elastic properties of cubic boron nitride by path-integral Monte Carlo simulation [Internet]. Computational Condensed Matter. 2022 ; 33 e00759-1-e00759-7.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1016/j.cocom.2022.e00759
    • Vancouver

      Brito BGA, Hai G-Q, Cândido L. Quantum effects on the elastic properties of cubic boron nitride by path-integral Monte Carlo simulation [Internet]. Computational Condensed Matter. 2022 ; 33 e00759-1-e00759-7.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1016/j.cocom.2022.e00759
  • Source: Physical Review Research. Unidade: IFSC

    Subjects: TERMODINÂMICA, SISTEMA QUÂNTICO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAWADZKI, Krissia de e SERRA, Roberto M. e D'AMICO, Irene. Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time. Physical Review Research, v. 2, n. 3, p. 033167-1-033167-6 + supplemental material, 2020Tradução . . Disponível em: https://doi.org/10.1103/PhysRevResearch.2.033167. Acesso em: 03 nov. 2025.
    • APA

      Zawadzki, K. de, Serra, R. M., & D'Amico, I. (2020). Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time. Physical Review Research, 2( 3), 033167-1-033167-6 + supplemental material. doi:10.1103/PhysRevResearch.2.033167
    • NLM

      Zawadzki K de, Serra RM, D'Amico I. Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time [Internet]. Physical Review Research. 2020 ; 2( 3): 033167-1-033167-6 + supplemental material.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1103/PhysRevResearch.2.033167
    • Vancouver

      Zawadzki K de, Serra RM, D'Amico I. Work-distribution quantumness and irreversibility when crossing a quantum phase transition in finite time [Internet]. Physical Review Research. 2020 ; 2( 3): 033167-1-033167-6 + supplemental material.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1103/PhysRevResearch.2.033167

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025