Filtros : "MECÂNICA ESTATÍSTICA" "Holanda" Removido: "2019" Limpar

Filtros



Refine with date range


  • Source: Stochastic Processes and their Applications. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, RETICULADOS, MODELO DE ISING, MUDANÇA DE FASE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e ENDO, Eric Ossami e VAN ENTER, Aernout C.D. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields. Stochastic Processes and their Applications, v. 127, p. 4126-4138, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2017.03.023. Acesso em: 03 nov. 2025.
    • APA

      Bissacot, R., Endo, E. O., & van Enter, A. C. D. (2017). Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields. Stochastic Processes and their Applications, 127, 4126-4138. doi:10.1016/j.spa.2017.03.023
    • NLM

      Bissacot R, Endo EO, van Enter ACD. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields [Internet]. Stochastic Processes and their Applications. 2017 ; 127 4126-4138.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1016/j.spa.2017.03.023
    • Vancouver

      Bissacot R, Endo EO, van Enter ACD. Stability of the phase transition of critical-field Ising model on Cayley trees under inhomogeneous external fields [Internet]. Stochastic Processes and their Applications. 2017 ; 127 4126-4138.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1016/j.spa.2017.03.023
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMIA, Federico e FONTES, Luiz Renato e NEWMAN, Charles M. The scaling limit geometry of near-critical 2D percolation. Journal of Statistical Physics, v. 125, n. 5-6, p. 1155-1171, 2006Tradução . . Disponível em: https://doi.org/10.1007/s10955-005-9014-6. Acesso em: 03 nov. 2025.
    • APA

      Camia, F., Fontes, L. R., & Newman, C. M. (2006). The scaling limit geometry of near-critical 2D percolation. Journal of Statistical Physics, 125( 5-6), 1155-1171. doi:10.1007/s10955-005-9014-6
    • NLM

      Camia F, Fontes LR, Newman CM. The scaling limit geometry of near-critical 2D percolation [Internet]. Journal of Statistical Physics. 2006 ; 125( 5-6): 1155-1171.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/s10955-005-9014-6
    • Vancouver

      Camia F, Fontes LR, Newman CM. The scaling limit geometry of near-critical 2D percolation [Internet]. Journal of Statistical Physics. 2006 ; 125( 5-6): 1155-1171.[citado 2025 nov. 03 ] Available from: https://doi.org/10.1007/s10955-005-9014-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025