Filtros : "MECÂNICA ESTATÍSTICA" "PROBABILIDADE" Removido: "IF" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Probability. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato Gonçalves e MACHADO, Mariela Pentón e ZUAZNÁBAR, Leonel. Scaling limit of an equilibrium surface under the random average process. Electronic Journal of Probability, v. 29, p. 1-28, 2024Tradução . . Disponível em: https://doi.org/10.1214/24-EJP1181. Acesso em: 04 nov. 2025.
    • APA

      Fontes, L. R. G., Machado, M. P., & Zuaznábar, L. (2024). Scaling limit of an equilibrium surface under the random average process. Electronic Journal of Probability, 29, 1-28. doi:10.1214/24-EJP1181
    • NLM

      Fontes LRG, Machado MP, Zuaznábar L. Scaling limit of an equilibrium surface under the random average process [Internet]. Electronic Journal of Probability. 2024 ; 29 1-28.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1214/24-EJP1181
    • Vancouver

      Fontes LRG, Machado MP, Zuaznábar L. Scaling limit of an equilibrium surface under the random average process [Internet]. Electronic Journal of Probability. 2024 ; 29 1-28.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1214/24-EJP1181
  • Source: Electronic Journal of Probability. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna et al. Non local branching Brownian motions with annihilation and free boundary problems. Electronic Journal of Probability, v. 24, p. 1-30, 2019Tradução . . Disponível em: https://doi.org/10.1214/19-ejp324. Acesso em: 04 nov. 2025.
    • APA

      De Masi, A., Ferrari, P. A., Presutti, E., & Soprano-Loto, N. (2019). Non local branching Brownian motions with annihilation and free boundary problems. Electronic Journal of Probability, 24, 1-30. doi:10.1214/19-ejp324
    • NLM

      De Masi A, Ferrari PA, Presutti E, Soprano-Loto N. Non local branching Brownian motions with annihilation and free boundary problems [Internet]. Electronic Journal of Probability. 2019 ; 24 1-30.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1214/19-ejp324
    • Vancouver

      De Masi A, Ferrari PA, Presutti E, Soprano-Loto N. Non local branching Brownian motions with annihilation and free boundary problems [Internet]. Electronic Journal of Probability. 2019 ; 24 1-30.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1214/19-ejp324
  • Conference titles: Pan-American Advanced Studies Institute - PASI. Unidade: IME

    Subjects: PROBABILIDADE, MECÂNICA ESTATÍSTICA, SISTEMAS DESORDENADOS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Topics in percolative and disordered systems. . New York: Springer. . Acesso em: 04 nov. 2025. , 2014
    • APA

      Topics in percolative and disordered systems. (2014). Topics in percolative and disordered systems. New York: Springer.
    • NLM

      Topics in percolative and disordered systems. 2014 ;[citado 2025 nov. 04 ]
    • Vancouver

      Topics in percolative and disordered systems. 2014 ;[citado 2025 nov. 04 ]
  • Source: The Annals of Applied Probability. Unidade: IME

    Subjects: PROBABILIDADE, PERCOLAÇÃO, PASSEIOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e GAVA, Renato Jacob e GAYRARD, Véronique. The K-process on a tree as a scaling limit of the GREM-like trap model. The Annals of Applied Probability, v. 24, n. 2, p. 857-897, 2014Tradução . . Disponível em: https://doi.org/10.1214/13-AAP937. Acesso em: 04 nov. 2025.
    • APA

      Fontes, L. R., Gava, R. J., & Gayrard, V. (2014). The K-process on a tree as a scaling limit of the GREM-like trap model. The Annals of Applied Probability, 24( 2), 857-897. doi:10.1214/13-AAP937
    • NLM

      Fontes LR, Gava RJ, Gayrard V. The K-process on a tree as a scaling limit of the GREM-like trap model [Internet]. The Annals of Applied Probability. 2014 ; 24( 2): 857-897.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1214/13-AAP937
    • Vancouver

      Fontes LR, Gava RJ, Gayrard V. The K-process on a tree as a scaling limit of the GREM-like trap model [Internet]. The Annals of Applied Probability. 2014 ; 24( 2): 857-897.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1214/13-AAP937
  • Source: Journal of Physics A. Unidade: IFSC

    Subjects: MECÂNICA ESTATÍSTICA, MATÉRIA CONDENSADA, PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Fábio Furlan e FONTANARI, José Fernando. Instance space of the number partitioning problem. Journal of Physics A, v. 33, p. 7265-7276, 2000Tradução . . Disponível em: https://doi.org/10.1088/0305-4470/33/41/301. Acesso em: 04 nov. 2025.
    • APA

      Ferreira, F. F., & Fontanari, J. F. (2000). Instance space of the number partitioning problem. Journal of Physics A, 33, 7265-7276. doi:10.1088/0305-4470/33/41/301
    • NLM

      Ferreira FF, Fontanari JF. Instance space of the number partitioning problem [Internet]. Journal of Physics A. 2000 ; 33 7265-7276.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/0305-4470/33/41/301
    • Vancouver

      Ferreira FF, Fontanari JF. Instance space of the number partitioning problem [Internet]. Journal of Physics A. 2000 ; 33 7265-7276.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/0305-4470/33/41/301
  • Source: Resumos. Conference titles: Encontro Nacional de Física da Matéria Condensada. Unidade: IFSC

    Subjects: MECÂNICA ESTATÍSTICA, PROBABILIDADE

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Fernando Fagundes e FONTANARI, José Fernando. Análise estatística do problema da partição numérica. 1999, Anais.. São Paulo: Sociedade Brasileira de Física, 1999. . Acesso em: 04 nov. 2025.
    • APA

      Ferreira, F. F., & Fontanari, J. F. (1999). Análise estatística do problema da partição numérica. In Resumos. São Paulo: Sociedade Brasileira de Física.
    • NLM

      Ferreira FF, Fontanari JF. Análise estatística do problema da partição numérica. Resumos. 1999 ;[citado 2025 nov. 04 ]
    • Vancouver

      Ferreira FF, Fontanari JF. Análise estatística do problema da partição numérica. Resumos. 1999 ;[citado 2025 nov. 04 ]
  • Source: Physica A. Unidade: IFSC

    Subjects: PROBABILIDADE, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Fábio Furlan e FONTANARI, José Fernando. Statistical mechanics analysis of the continuos number partitioning problem. Physica A, v. 269, p. 54-60, 1999Tradução . . Disponível em: https://doi.org/10.1016/s0378-4371(99)00079-5. Acesso em: 04 nov. 2025.
    • APA

      Ferreira, F. F., & Fontanari, J. F. (1999). Statistical mechanics analysis of the continuos number partitioning problem. Physica A, 269, 54-60. doi:10.1016/s0378-4371(99)00079-5
    • NLM

      Ferreira FF, Fontanari JF. Statistical mechanics analysis of the continuos number partitioning problem [Internet]. Physica A. 1999 ; 269 54-60.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1016/s0378-4371(99)00079-5
    • Vancouver

      Ferreira FF, Fontanari JF. Statistical mechanics analysis of the continuos number partitioning problem [Internet]. Physica A. 1999 ; 269 54-60.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1016/s0378-4371(99)00079-5
  • Source: Journal of Physics A: Mathematical and General. Unidade: IFSC

    Subjects: MECÂNICA ESTATÍSTICA, PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Fábio Furlan e FONTANARI, José Fernando. Probabilistic analysis of the number partitioning problem. Journal of Physics A: Mathematical and General, v. 31, p. 3417-3428, 1998Tradução . . Disponível em: https://doi.org/10.1088/0305-4470/31/15/007. Acesso em: 04 nov. 2025.
    • APA

      Ferreira, F. F., & Fontanari, J. F. (1998). Probabilistic analysis of the number partitioning problem. Journal of Physics A: Mathematical and General, 31, 3417-3428. doi:10.1088/0305-4470/31/15/007
    • NLM

      Ferreira FF, Fontanari JF. Probabilistic analysis of the number partitioning problem [Internet]. Journal of Physics A: Mathematical and General. 1998 ; 31 3417-3428.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/0305-4470/31/15/007
    • Vancouver

      Ferreira FF, Fontanari JF. Probabilistic analysis of the number partitioning problem [Internet]. Journal of Physics A: Mathematical and General. 1998 ; 31 3417-3428.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1088/0305-4470/31/15/007
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS DE MARKOV, MECÂNICA ESTATÍSTICA, PASSEIOS ALEATÓRIOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, A et al. Invariance principle for reversible Markov processes: applications to randon motions in random environments. Journal of Statistical Physics, v. 55, n. 3-4, p. 787-856, 1989Tradução . . Disponível em: https://doi.org/10.1007/BF01041608. Acesso em: 04 nov. 2025.
    • APA

      De Masi, A., Ferrari, P. A., Goldstein, S., & Wick, W. D. (1989). Invariance principle for reversible Markov processes: applications to randon motions in random environments. Journal of Statistical Physics, 55( 3-4), 787-856. doi:10.1007/BF01041608
    • NLM

      De Masi A, Ferrari PA, Goldstein S, Wick WD. Invariance principle for reversible Markov processes: applications to randon motions in random environments [Internet]. Journal of Statistical Physics. 1989 ;55( 3-4): 787-856.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/BF01041608
    • Vancouver

      De Masi A, Ferrari PA, Goldstein S, Wick WD. Invariance principle for reversible Markov processes: applications to randon motions in random environments [Internet]. Journal of Statistical Physics. 1989 ;55( 3-4): 787-856.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/BF01041608
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DURRETT, Richard e SCHONMANN, Roberto Henrique e TANAKA, Nelson Ithiro. Correlation lengths for oriented percolation. Journal of Statistical Physics, v. 55, p. 965-79, 1989Tradução . . Disponível em: https://doi.org/10.1007/bf01041074. Acesso em: 04 nov. 2025.
    • APA

      Durrett, R., Schonmann, R. H., & Tanaka, N. I. (1989). Correlation lengths for oriented percolation. Journal of Statistical Physics, 55, 965-79. doi:10.1007/bf01041074
    • NLM

      Durrett R, Schonmann RH, Tanaka NI. Correlation lengths for oriented percolation [Internet]. Journal of Statistical Physics. 1989 ;55 965-79.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/bf01041074
    • Vancouver

      Durrett R, Schonmann RH, Tanaka NI. Correlation lengths for oriented percolation [Internet]. Journal of Statistical Physics. 1989 ;55 965-79.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/bf01041074

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025