Filtros : "IME" "Journal of Differential Equations" "Estados Unidos" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA QUÂNTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia. Dynamical and variational properties of the NLS-δs′ equation on the star graph. Journal of Differential Equations, v. 310, p. 1-44, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.047. Acesso em: 09 out. 2024.
    • APA

      Goloshchapova, N. (2022). Dynamical and variational properties of the NLS-δs′ equation on the star graph. Journal of Differential Equations, 310, 1-44. doi:10.1016/j.jde.2021.11.047
    • NLM

      Goloshchapova N. Dynamical and variational properties of the NLS-δs′ equation on the star graph [Internet]. Journal of Differential Equations. 2022 ; 310 1-44.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2021.11.047
    • Vancouver

      Goloshchapova N. Dynamical and variational properties of the NLS-δs′ equation on the star graph [Internet]. Journal of Differential Equations. 2022 ; 310 1-44.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2021.11.047
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro e SICILIANO, Gaetano. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, v. 267, n. 2, p. 1025-1065, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.02.001. Acesso em: 09 out. 2024.
    • APA

      d'Avenia, P., & Siciliano, G. (2019). Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, 267( 2), 1025-1065. doi:10.1016/j.jde.2019.02.001
    • NLM

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2019.02.001
    • Vancouver

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2019.02.001
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: ANÁLISE GLOBAL, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÒ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Functions on the sphere with critical points in pairs and orthogonal geodesic chords. Journal of Differential Equations, v. 260, n. 11, p. 8261-8275, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.02.018. Acesso em: 09 out. 2024.
    • APA

      Giambò, R., Giannoni, F., & Piccione, P. (2016). Functions on the sphere with critical points in pairs and orthogonal geodesic chords. Journal of Differential Equations, 260( 11), 8261-8275. doi:10.1016/j.jde.2016.02.018
    • NLM

      Giambò R, Giannoni F, Piccione P. Functions on the sphere with critical points in pairs and orthogonal geodesic chords [Internet]. Journal of Differential Equations. 2016 ; 260( 11): 8261-8275.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2016.02.018
    • Vancouver

      Giambò R, Giannoni F, Piccione P. Functions on the sphere with critical points in pairs and orthogonal geodesic chords [Internet]. Journal of Differential Equations. 2016 ; 260( 11): 8261-8275.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2016.02.018
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SUN, Wenxiang e TIAN, Xueting e VARGAS, Edson. Non-uniformly hyperbolic flows and shadowing. Journal of Differential Equations, v. 261, n. 1, p. 218-235, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.03.001. Acesso em: 09 out. 2024.
    • APA

      Sun, W., Tian, X., & Vargas, E. (2016). Non-uniformly hyperbolic flows and shadowing. Journal of Differential Equations, 261( 1), 218-235. doi:10.1016/j.jde.2016.03.001
    • NLM

      Sun W, Tian X, Vargas E. Non-uniformly hyperbolic flows and shadowing [Internet]. Journal of Differential Equations. 2016 ; 261( 1): 218-235.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2016.03.001
    • Vancouver

      Sun W, Tian X, Vargas E. Non-uniformly hyperbolic flows and shadowing [Internet]. Journal of Differential Equations. 2016 ; 261( 1): 218-235.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2016.03.001
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, SISTEMAS LAGRANGIANOS, SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Examples with minimal number of brake orbits and homoclinics in annular potential regions. Journal of Differential Equations, v. 256, n. 8, p. 2677-2690, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2014.01.008. Acesso em: 09 out. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2014). Examples with minimal number of brake orbits and homoclinics in annular potential regions. Journal of Differential Equations, 256( 8), 2677-2690. doi:10.1016/j.jde.2014.01.008
    • NLM

      Giambó R, Giannoni F, Piccione P. Examples with minimal number of brake orbits and homoclinics in annular potential regions [Internet]. Journal of Differential Equations. 2014 ; 256( 8): 2677-2690.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2014.01.008
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Examples with minimal number of brake orbits and homoclinics in annular potential regions [Internet]. Journal of Differential Equations. 2014 ; 256( 8): 2677-2690.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2014.01.008
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo et al. The regularized Boussinesq equation: instability of periodic traveling waves. Journal of Differential Equations, v. 254, n. 9, p. 3994-4023, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2013.01.034. Acesso em: 09 out. 2024.
    • APA

      Pava, J. A., Banquet, C., Silva, J. D., & Oliveira, F. (2013). The regularized Boussinesq equation: instability of periodic traveling waves. Journal of Differential Equations, 254( 9), 3994-4023. doi:10.1016/j.jde.2013.01.034
    • NLM

      Pava JA, Banquet C, Silva JD, Oliveira F. The regularized Boussinesq equation: instability of periodic traveling waves [Internet]. Journal of Differential Equations. 2013 ; 254( 9): 3994-4023.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2013.01.034
    • Vancouver

      Pava JA, Banquet C, Silva JD, Oliveira F. The regularized Boussinesq equation: instability of periodic traveling waves [Internet]. Journal of Differential Equations. 2013 ; 254( 9): 3994-4023.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2013.01.034
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COX, Ben e FUTORNY, Vyacheslav e TIRAO, Juan A. DJKM algebras and non-classical orthogonal polynomials. Journal of Differential Equations, v. 255, n. 9, p. 2846-2870, 2013Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2013.07.020. Acesso em: 09 out. 2024.
    • APA

      Cox, B., Futorny, V., & Tirao, J. A. (2013). DJKM algebras and non-classical orthogonal polynomials. Journal of Differential Equations, 255( 9), 2846-2870. doi:10.1016/j.jde.2013.07.020
    • NLM

      Cox B, Futorny V, Tirao JA. DJKM algebras and non-classical orthogonal polynomials [Internet]. Journal of Differential Equations. 2013 ; 255( 9): 2846-2870.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2013.07.020
    • Vancouver

      Cox B, Futorny V, Tirao JA. DJKM algebras and non-classical orthogonal polynomials [Internet]. Journal of Differential Equations. 2013 ; 255( 9): 2846-2870.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2013.07.020
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ANÁLISE VARIACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARDO, Rosa e PEREIRA, Antônio Luiz e SABINA DE LIS, Jose C. The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2011.08.049. Acesso em: 09 out. 2024.
    • APA

      Pardo, R., Pereira, A. L., & Sabina de Lis, J. C. (2012). The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations. doi:10.1016/j.jde.2011.08.049
    • NLM

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049
    • Vancouver

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Gleiciane da Silva e OLIVA, Sérgio Muniz. Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary. Journal of Differential Equations, v. 253, n. 9, p. 2573-2592, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2012.07.008. Acesso em: 09 out. 2024.
    • APA

      Aragão, G. da S., & Oliva, S. M. (2012). Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary. Journal of Differential Equations, 253( 9), 2573-2592. doi:10.1016/j.jde.2012.07.008
    • NLM

      Aragão G da S, Oliva SM. Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary [Internet]. Journal of Differential Equations. 2012 ; 253( 9): 2573-2592.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2012.07.008
    • Vancouver

      Aragão G da S, Oliva SM. Delay nonlinear boundary conditions as limit of reactions concentrating in the boundary [Internet]. Journal of Differential Equations. 2012 ; 253( 9): 2573-2592.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2012.07.008
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES ALGÉBRICAS NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e SCIALOM, Marcia e BANQUET, Carlos. The regularized Benjamin-Ono and BBM equations: well-posedness and nonlinear stability. Journal of Differential Equations, v. 250, n. 11, p. 4011-4036, 2011Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2010.12.016. Acesso em: 09 out. 2024.
    • APA

      Pava, J. A., Scialom, M., & Banquet, C. (2011). The regularized Benjamin-Ono and BBM equations: well-posedness and nonlinear stability. Journal of Differential Equations, 250( 11), 4011-4036. doi:10.1016/j.jde.2010.12.016
    • NLM

      Pava JA, Scialom M, Banquet C. The regularized Benjamin-Ono and BBM equations: well-posedness and nonlinear stability [Internet]. Journal of Differential Equations. 2011 ; 250( 11): 4011-4036.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2010.12.016
    • Vancouver

      Pava JA, Scialom M, Banquet C. The regularized Benjamin-Ono and BBM equations: well-posedness and nonlinear stability [Internet]. Journal of Differential Equations. 2011 ; 250( 11): 4011-4036.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2010.12.016
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ESTABILIDADE DE LIAPUNOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREIRE JÚNIOR, Ricardo dos Santos e GARCIA, Manuel Valentim de Pera e TAL, Fábio Armando. Instability of equilibrium points of some Lagrangian systems. Journal of Differential Equations, v. 245, n. 2, p. 490-504, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2008.02.016. Acesso em: 09 out. 2024.
    • APA

      Freire Júnior, R. dos S., Garcia, M. V. de P., & Tal, F. A. (2008). Instability of equilibrium points of some Lagrangian systems. Journal of Differential Equations, 245( 2), 490-504. doi:10.1016/j.jde.2008.02.016
    • NLM

      Freire Júnior R dos S, Garcia MV de P, Tal FA. Instability of equilibrium points of some Lagrangian systems [Internet]. Journal of Differential Equations. 2008 ; 245( 2): 490-504.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2008.02.016
    • Vancouver

      Freire Júnior R dos S, Garcia MV de P, Tal FA. Instability of equilibrium points of some Lagrangian systems [Internet]. Journal of Differential Equations. 2008 ; 245( 2): 490-504.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2008.02.016
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BROCHE, Rita de Cássia Dornelas Sodré e OLIVEIRA, Luís Augusto Fernandes de. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property. Journal of Differential Equations, v. 245, n. 5, p. 1386-1411, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2008.06.017. Acesso em: 09 out. 2024.
    • APA

      Broche, R. de C. D. S., & Oliveira, L. A. F. de. (2008). Reaction-diffusion systems coupled at the boundary and the Morse-Smale property. Journal of Differential Equations, 245( 5), 1386-1411. doi:10.1016/j.jde.2008.06.017
    • NLM

      Broche R de CDS, Oliveira LAF de. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property [Internet]. Journal of Differential Equations. 2008 ; 245( 5): 1386-1411.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2008.06.017
    • Vancouver

      Broche R de CDS, Oliveira LAF de. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property [Internet]. Journal of Differential Equations. 2008 ; 245( 5): 1386-1411.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2008.06.017
  • Source: Journal of Differential Equations. Unidades: IME, EACH

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain. Journal of Differential Equations, v. 239, n. 2, p. 343-370, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2007.05.018. Acesso em: 09 out. 2024.
    • APA

      Pereira, A. L., & Pereira, M. C. (2007). Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain. Journal of Differential Equations, 239( 2), 343-370. doi:10.1016/j.jde.2007.05.018
    • NLM

      Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain [Internet]. Journal of Differential Equations. 2007 ; 239( 2): 343-370.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2007.05.018
    • Vancouver

      Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain [Internet]. Journal of Differential Equations. 2007 ; 239( 2): 343-370.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2007.05.018
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta e SALOMÃO, Pedro Antônio Santoro. The Conley-Zehnder index and the saddle-center equilibrium. Journal of Differential Equations, v. 220, n. 1, p. 259-278, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2005.03.015. Acesso em: 09 out. 2024.
    • APA

      Ragazzo, C. G., & Salomão, P. A. S. (2006). The Conley-Zehnder index and the saddle-center equilibrium. Journal of Differential Equations, 220( 1), 259-278. doi:10.1016/j.jde.2005.03.015
    • NLM

      Ragazzo CG, Salomão PAS. The Conley-Zehnder index and the saddle-center equilibrium [Internet]. Journal of Differential Equations. 2006 ; 220( 1): 259-278.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2005.03.015
    • Vancouver

      Ragazzo CG, Salomão PAS. The Conley-Zehnder index and the saddle-center equilibrium [Internet]. Journal of Differential Equations. 2006 ; 220( 1): 259-278.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2005.03.015
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS LINEARES NÃO HOMOGÊNEAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain. Journal of Differential Equations, v. 226, n. 1, p. 352-372, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2006.03.016. Acesso em: 09 out. 2024.
    • APA

      Pereira, A. L. (2006). Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain. Journal of Differential Equations, 226( 1), 352-372. doi:10.1016/j.jde.2006.03.016
    • NLM

      Pereira AL. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain [Internet]. Journal of Differential Equations. 2006 ; 226( 1): 352-372.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2006.03.016
    • Vancouver

      Pereira AL. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain [Internet]. Journal of Differential Equations. 2006 ; 226( 1): 352-372.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2006.03.016
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e PORTALURI, Alessandro. A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation. Journal of Differential Equations, v. 210, n. 2, p. 233-262, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2004.11.007. Acesso em: 09 out. 2024.
    • APA

      Piccione, P., & Portaluri, A. (2005). A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation. Journal of Differential Equations, 210( 2), 233-262. doi:10.1016/j.jde.2004.11.007
    • NLM

      Piccione P, Portaluri A. A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation [Internet]. Journal of Differential Equations. 2005 ; 210( 2): 233-262.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2004.11.007
    • Vancouver

      Piccione P, Portaluri A. A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation [Internet]. Journal of Differential Equations. 2005 ; 210( 2): 233-262.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2004.11.007
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Manuel Valentim de Pera e TAL, Fábio Armando. The influence of the kinetic energy in equilibrium of hamiltonian systems. Journal of Differential Equations, v. 213, n. 2, p. 410-442, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2004.10.003. Acesso em: 09 out. 2024.
    • APA

      Garcia, M. V. de P., & Tal, F. A. (2005). The influence of the kinetic energy in equilibrium of hamiltonian systems. Journal of Differential Equations, 213( 2), 410-442. doi:10.1016/j.jde.2004.10.003
    • NLM

      Garcia MV de P, Tal FA. The influence of the kinetic energy in equilibrium of hamiltonian systems [Internet]. Journal of Differential Equations. 2005 ; 213( 2): 410-442.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2004.10.003
    • Vancouver

      Garcia MV de P, Tal FA. The influence of the kinetic energy in equilibrium of hamiltonian systems [Internet]. Journal of Differential Equations. 2005 ; 213( 2): 410-442.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2004.10.003
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e RAGAZZO, Clodoaldo Grotta. Conservative dynamics: unstable sets for saddle-center loops. Journal of Differential Equations, v. 197, n. 1, p. 118-146, 2004Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2003.07.010. Acesso em: 09 out. 2024.
    • APA

      Addas-Zanata, S., & Ragazzo, C. G. (2004). Conservative dynamics: unstable sets for saddle-center loops. Journal of Differential Equations, 197( 1), 118-146. doi:10.1016/j.jde.2003.07.010
    • NLM

      Addas-Zanata S, Ragazzo CG. Conservative dynamics: unstable sets for saddle-center loops [Internet]. Journal of Differential Equations. 2004 ; 197( 1): 118-146.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2003.07.010
    • Vancouver

      Addas-Zanata S, Ragazzo CG. Conservative dynamics: unstable sets for saddle-center loops [Internet]. Journal of Differential Equations. 2004 ; 197( 1): 118-146.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/j.jde.2003.07.010
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOTOMAYOR, Jorge e GARCIA, Ronaldo Alves. Structural stability of piecewise-linear vector fields. Journal of Differential Equations, v. 192, n. 2, p. 553-565, 2003Tradução . . Disponível em: https://doi.org/10.1016/s0022-0396(03)00059-7. Acesso em: 09 out. 2024.
    • APA

      Sotomayor, J., & Garcia, R. A. (2003). Structural stability of piecewise-linear vector fields. Journal of Differential Equations, 192( 2), 553-565. doi:10.1016/s0022-0396(03)00059-7
    • NLM

      Sotomayor J, Garcia RA. Structural stability of piecewise-linear vector fields [Internet]. Journal of Differential Equations. 2003 ; 192( 2): 553-565.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/s0022-0396(03)00059-7
    • Vancouver

      Sotomayor J, Garcia RA. Structural stability of piecewise-linear vector fields [Internet]. Journal of Differential Equations. 2003 ; 192( 2): 553-565.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/s0022-0396(03)00059-7
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ESTABILIDADE DE SISTEMAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Manuel Valentim de Pera e TAL, Fábio Armando. Stability of equilibrium of conservative systems with two degrees of freedom. Journal of Differential Equations, v. 194, n. 2, p. 364-381, 2003Tradução . . Disponível em: https://doi.org/10.1016/S0022-0396(03)00167-0. Acesso em: 09 out. 2024.
    • APA

      Garcia, M. V. de P., & Tal, F. A. (2003). Stability of equilibrium of conservative systems with two degrees of freedom. Journal of Differential Equations, 194( 2), 364-381. doi:10.1016/S0022-0396(03)00167-0
    • NLM

      Garcia MV de P, Tal FA. Stability of equilibrium of conservative systems with two degrees of freedom [Internet]. Journal of Differential Equations. 2003 ; 194( 2): 364-381.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/S0022-0396(03)00167-0
    • Vancouver

      Garcia MV de P, Tal FA. Stability of equilibrium of conservative systems with two degrees of freedom [Internet]. Journal of Differential Equations. 2003 ; 194( 2): 364-381.[citado 2024 out. 09 ] Available from: https://doi.org/10.1016/S0022-0396(03)00167-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024