Filtros : "IME" "Journal of Differential Equations" "Pereira, Antônio Luiz" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ANÁLISE VARIACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PARDO, Rosa e PEREIRA, Antônio Luiz e SABINA DE LIS, Jose C. The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations, 2012Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2011.08.049. Acesso em: 13 nov. 2024.
    • APA

      Pardo, R., Pereira, A. L., & Sabina de Lis, J. C. (2012). The tangential variation of a localized flux-type eigenvalue problem. Journal of Differential Equations. doi:10.1016/j.jde.2011.08.049
    • NLM

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049
    • Vancouver

      Pardo R, Pereira AL, Sabina de Lis JC. The tangential variation of a localized flux-type eigenvalue problem [Internet]. Journal of Differential Equations. 2012 ;[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2011.08.049
  • Source: Journal of Differential Equations. Unidades: IME, EACH

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain. Journal of Differential Equations, v. 239, n. 2, p. 343-370, 2007Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2007.05.018. Acesso em: 13 nov. 2024.
    • APA

      Pereira, A. L., & Pereira, M. C. (2007). Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain. Journal of Differential Equations, 239( 2), 343-370. doi:10.1016/j.jde.2007.05.018
    • NLM

      Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain [Internet]. Journal of Differential Equations. 2007 ; 239( 2): 343-370.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2007.05.018
    • Vancouver

      Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with nonlinear boundary conditions with respect to variations of the domain [Internet]. Journal of Differential Equations. 2007 ; 239( 2): 343-370.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2007.05.018
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS LINEARES NÃO HOMOGÊNEAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Antônio Luiz. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain. Journal of Differential Equations, v. 226, n. 1, p. 352-372, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2006.03.016. Acesso em: 13 nov. 2024.
    • APA

      Pereira, A. L. (2006). Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain. Journal of Differential Equations, 226( 1), 352-372. doi:10.1016/j.jde.2006.03.016
    • NLM

      Pereira AL. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain [Internet]. Journal of Differential Equations. 2006 ; 226( 1): 352-372.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2006.03.016
    • Vancouver

      Pereira AL. Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain [Internet]. Journal of Differential Equations. 2006 ; 226( 1): 352-372.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2006.03.016

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024