Filtros : "IME" "Journal of Differential Equations" "Itália" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS, FÍSICA MOLECULAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro e MAIA, Liliane e SICILIANO, Gaetano. Hartree-Fock type systems: existence of ground states and asymptotic behavior. Journal of Differential Equations, v. 355, p. 580-614, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2022.07.012. Acesso em: 13 nov. 2024.
    • APA

      d'Avenia, P., Maia, L., & Siciliano, G. (2022). Hartree-Fock type systems: existence of ground states and asymptotic behavior. Journal of Differential Equations, 355, 580-614. doi:10.1016/j.jde.2022.07.012
    • NLM

      d'Avenia P, Maia L, Siciliano G. Hartree-Fock type systems: existence of ground states and asymptotic behavior [Internet]. Journal of Differential Equations. 2022 ; 355 580-614.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2022.07.012
    • Vancouver

      d'Avenia P, Maia L, Siciliano G. Hartree-Fock type systems: existence of ground states and asymptotic behavior [Internet]. Journal of Differential Equations. 2022 ; 355 580-614.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2022.07.012
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro e SICILIANO, Gaetano. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, v. 267, n. 2, p. 1025-1065, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.02.001. Acesso em: 13 nov. 2024.
    • APA

      d'Avenia, P., & Siciliano, G. (2019). Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, 267( 2), 1025-1065. doi:10.1016/j.jde.2019.02.001
    • NLM

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2019.02.001
    • Vancouver

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2019.02.001
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: ANÁLISE GLOBAL, GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÒ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Functions on the sphere with critical points in pairs and orthogonal geodesic chords. Journal of Differential Equations, v. 260, n. 11, p. 8261-8275, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.02.018. Acesso em: 13 nov. 2024.
    • APA

      Giambò, R., Giannoni, F., & Piccione, P. (2016). Functions on the sphere with critical points in pairs and orthogonal geodesic chords. Journal of Differential Equations, 260( 11), 8261-8275. doi:10.1016/j.jde.2016.02.018
    • NLM

      Giambò R, Giannoni F, Piccione P. Functions on the sphere with critical points in pairs and orthogonal geodesic chords [Internet]. Journal of Differential Equations. 2016 ; 260( 11): 8261-8275.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2016.02.018
    • Vancouver

      Giambò R, Giannoni F, Piccione P. Functions on the sphere with critical points in pairs and orthogonal geodesic chords [Internet]. Journal of Differential Equations. 2016 ; 260( 11): 8261-8275.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2016.02.018
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e PORTALURI, Alessandro. A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation. Journal of Differential Equations, v. 210, n. 2, p. 233-262, 2005Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2004.11.007. Acesso em: 13 nov. 2024.
    • APA

      Piccione, P., & Portaluri, A. (2005). A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation. Journal of Differential Equations, 210( 2), 233-262. doi:10.1016/j.jde.2004.11.007
    • NLM

      Piccione P, Portaluri A. A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation [Internet]. Journal of Differential Equations. 2005 ; 210( 2): 233-262.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2004.11.007
    • Vancouver

      Piccione P, Portaluri A. A bifurcation result for semi-Riemannian trajectories of the Lorentz force equation [Internet]. Journal of Differential Equations. 2005 ; 210( 2): 233-262.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/j.jde.2004.11.007
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: ESTABILIDADE DE LIAPUNOV

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARONE NETTO, Angelo e CESAR, Mauro de Oliveira e GORNI, Gianluca. A computational method for the stability of a class of mechanical systems. Journal of Differential Equations, v. 184, n. 1, p. 1-19, 2002Tradução . . Disponível em: https://doi.org/10.1006/jdeq.2001.4126. Acesso em: 13 nov. 2024.
    • APA

      Barone Netto, A., Cesar, M. de O., & Gorni, G. (2002). A computational method for the stability of a class of mechanical systems. Journal of Differential Equations, 184( 1), 1-19. doi:10.1006/jdeq.2001.4126
    • NLM

      Barone Netto A, Cesar M de O, Gorni G. A computational method for the stability of a class of mechanical systems [Internet]. Journal of Differential Equations. 2002 ; 184( 1): 1-19.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1006/jdeq.2001.4126
    • Vancouver

      Barone Netto A, Cesar M de O, Gorni G. A computational method for the stability of a class of mechanical systems [Internet]. Journal of Differential Equations. 2002 ; 184( 1): 1-19.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1006/jdeq.2001.4126
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUSCO, Giorgio e OLIVA, Waldyr Muniz. Integrability of a system of n electrons subjected to coulombian interactions. Journal of Differential Equations, v. 135, n. 1, p. 16-40, 1997Tradução . . Disponível em: https://doi.org/10.1006/jdeq.1996.3171. Acesso em: 13 nov. 2024.
    • APA

      Fusco, G., & Oliva, W. M. (1997). Integrability of a system of n electrons subjected to coulombian interactions. Journal of Differential Equations, 135( 1), 16-40. doi:10.1006/jdeq.1996.3171
    • NLM

      Fusco G, Oliva WM. Integrability of a system of n electrons subjected to coulombian interactions [Internet]. Journal of Differential Equations. 1997 ; 135( 1): 16-40.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1006/jdeq.1996.3171
    • Vancouver

      Fusco G, Oliva WM. Integrability of a system of n electrons subjected to coulombian interactions [Internet]. Journal of Differential Equations. 1997 ; 135( 1): 16-40.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1006/jdeq.1996.3171
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOAURO, Vinicio e NEGRINI, Piero e OLIVA, Waldyr Muniz. Analytic integrability for a class of cone potential Hamiltonian systems. Journal of Differential Equations, v. 90, n. 1 , p. 61-70, 1991Tradução . . Disponível em: https://doi.org/10.1016/0022-0396(91)90161-2. Acesso em: 13 nov. 2024.
    • APA

      Moauro, V., Negrini, P., & Oliva, W. M. (1991). Analytic integrability for a class of cone potential Hamiltonian systems. Journal of Differential Equations, 90( 1 ), 61-70. doi:10.1016/0022-0396(91)90161-2
    • NLM

      Moauro V, Negrini P, Oliva WM. Analytic integrability for a class of cone potential Hamiltonian systems [Internet]. Journal of Differential Equations. 1991 ; 90( 1 ): 61-70.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/0022-0396(91)90161-2
    • Vancouver

      Moauro V, Negrini P, Oliva WM. Analytic integrability for a class of cone potential Hamiltonian systems [Internet]. Journal of Differential Equations. 1991 ; 90( 1 ): 61-70.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/0022-0396(91)90161-2
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ANÁLISE GLOBAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz e FUSCO, Giorgio. Dissipative systems with constraints. Journal of Differential Equations, v. 63, n. 3 , p. 362-388, 1986Tradução . . Disponível em: https://doi.org/10.1016/0022-0396(86)90061-6. Acesso em: 13 nov. 2024.
    • APA

      Oliva, W. M., & Fusco, G. (1986). Dissipative systems with constraints. Journal of Differential Equations, 63( 3 ), 362-388. doi:10.1016/0022-0396(86)90061-6
    • NLM

      Oliva WM, Fusco G. Dissipative systems with constraints [Internet]. Journal of Differential Equations. 1986 ; 63( 3 ): 362-388.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/0022-0396(86)90061-6
    • Vancouver

      Oliva WM, Fusco G. Dissipative systems with constraints [Internet]. Journal of Differential Equations. 1986 ; 63( 3 ): 362-388.[citado 2024 nov. 13 ] Available from: https://doi.org/10.1016/0022-0396(86)90061-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024