Filtros : "San Diego" "Financiamento FAPEMIG" Removido: "FZEA-ZMV" Limpar

Filtros



Refine with date range


  • Source: Experimental Neurology. Unidade: IQ

    Subjects: ARTÉRIA CEREBRAL MÉDIA, PROTEÍNAS QUINASES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAVALCANTE, Daniel Pereira et al. GlyT1 inhibition promotes neuroprotection in the middle cerebral artery occlusion model through the activation of GluN2A-containing NMDAR. Experimental Neurology, v. 383, p. 1-13 art. 115006, 2025Tradução . . Disponível em: https://dx.doi.org/10.1016/j.expneurol.2024.115006. Acesso em: 10 nov. 2024.
    • APA

      Cavalcante, D. P., Nunes, A. Í. dos S., Silva, E. R. da, Carvalho, G. A. de, Chiareli, R. A., Lima, O. C. O., et al. (2025). GlyT1 inhibition promotes neuroprotection in the middle cerebral artery occlusion model through the activation of GluN2A-containing NMDAR. Experimental Neurology, 383, 1-13 art. 115006. doi:10.1016/j.expneurol.2024.115006
    • NLM

      Cavalcante DP, Nunes AÍ dos S, Silva ER da, Carvalho GA de, Chiareli RA, Lima OCO, Leoncini GO, Ulrich H, Gomez RS, Pinto MCX. GlyT1 inhibition promotes neuroprotection in the middle cerebral artery occlusion model through the activation of GluN2A-containing NMDAR [Internet]. Experimental Neurology. 2025 ; 383 1-13 art. 115006.[citado 2024 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.expneurol.2024.115006
    • Vancouver

      Cavalcante DP, Nunes AÍ dos S, Silva ER da, Carvalho GA de, Chiareli RA, Lima OCO, Leoncini GO, Ulrich H, Gomez RS, Pinto MCX. GlyT1 inhibition promotes neuroprotection in the middle cerebral artery occlusion model through the activation of GluN2A-containing NMDAR [Internet]. Experimental Neurology. 2025 ; 383 1-13 art. 115006.[citado 2024 nov. 10 ] Available from: https://dx.doi.org/10.1016/j.expneurol.2024.115006
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS, INTEGRAL DE HENSTOCK, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, v. No 2023, n. 2, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2023.127464. Acesso em: 10 nov. 2024.
    • APA

      Bonotto, E. de M., Collegari, R., Federson, M., & Gill, T. (2023). Operator-valued stochastic differential equations in the context of Kurzweil-like equations. Journal of Mathematical Analysis and Applications, No 2023( 2), 1-27. doi:10.1016/j.jmaa.2023.127464
    • NLM

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
    • Vancouver

      Bonotto E de M, Collegari R, Federson M, Gill T. Operator-valued stochastic differential equations in the context of Kurzweil-like equations [Internet]. Journal of Mathematical Analysis and Applications. 2023 ; No 2023( 2): 1-27.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2023.127464
  • Source: Finite Fields and their Applications. Unidade: ICMC

    Subjects: TEORIA DE GALOIS, SOMAS GAUSSIANAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, José Alves e BORGES, Herivelto e BROCHERO MARTÍNEZ, Fabio Enrique. On the number of rational points on Artin-Schreier hypersurfaces. Finite Fields and their Applications, v. 90, p. 1-25, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2023.102229. Acesso em: 10 nov. 2024.
    • APA

      Oliveira, J. A., Borges, H., & Brochero Martínez, F. E. (2023). On the number of rational points on Artin-Schreier hypersurfaces. Finite Fields and their Applications, 90, 1-25. doi:10.1016/j.ffa.2023.102229
    • NLM

      Oliveira JA, Borges H, Brochero Martínez FE. On the number of rational points on Artin-Schreier hypersurfaces [Internet]. Finite Fields and their Applications. 2023 ; 90 1-25.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.ffa.2023.102229
    • Vancouver

      Oliveira JA, Borges H, Brochero Martínez FE. On the number of rational points on Artin-Schreier hypersurfaces [Internet]. Finite Fields and their Applications. 2023 ; 90 1-25.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.ffa.2023.102229
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, v. 307, n. Ja 2022, p. 160-210, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.10.044. Acesso em: 10 nov. 2024.
    • APA

      Silva, F. A. da, Federson, M., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson M, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024