Filtros : "San Diego" "ATRATORES" Removido: "FZEA-ZMV" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, PROBLEMAS DE CONTORNO, SISTEMAS DINÂMICOS

    Disponível em 2026-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio et al. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, v. 393, p. 58-101, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.02.005. Acesso em: 10 nov. 2024.
    • APA

      López-Lázaro, H., Nascimento, M. J. D., Takaessu Junior, C. R., & Azevedo, V. T. (2024). Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain. Journal of Differential Equations, 393, 58-101. doi:10.1016/j.jde.2024.02.005
    • NLM

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
    • Vancouver

      López-Lázaro H, Nascimento MJD, Takaessu Junior CR, Azevedo VT. Pullback attractors with finite fractal dimension for a semilinear transfer equation with delay in some non-cylindrical domain [Internet]. Journal of Differential Equations. 2024 ; 393 58-101.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2024.02.005
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 10 nov. 2024.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 10 nov. 2024.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, v. No 2021, p. 312-336, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.07.044. Acesso em: 10 nov. 2024.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.07.044
  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e FERNANDES, Denis e WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, v. No 2021, p. 753-806, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.014. Acesso em: 10 nov. 2024.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, v. 285, p. 383-428, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.013. Acesso em: 10 nov. 2024.
    • APA

      Cui, H., Carvalho, A. N. de, Cunha, A. C., & Langa, J. A. (2021). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, 285, 383-428. doi:10.1016/j.jde.2021.03.013
    • NLM

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
    • Vancouver

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CONTI, M et al. Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, v. 264, n. 7, p. 4235-4259, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2017.12.010. Acesso em: 10 nov. 2024.
    • APA

      Conti, M., Ma, T. F., Marchini, E. M., & Huertas, P. N. S. (2018). Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, 264( 7), 4235-4259. doi:10.1016/j.jde.2017.12.010
    • NLM

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
    • Vancouver

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, v. 452, n. 1, p. 258-296, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.03.008. Acesso em: 10 nov. 2024.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2017.03.008
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 377-405, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.024. Acesso em: 10 nov. 2024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e MARÍN-RUBIO, Pedro e CHUÑO, Christian Manuel Surco. Dynamics of wave equations with moving boundary. Journal of Differential Equations, v. 262, n. 5, p. 3317-3342, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2016.11.030. Acesso em: 10 nov. 2024.
    • APA

      Ma, T. F., Marín-Rubio, P., & Chuño, C. M. S. (2017). Dynamics of wave equations with moving boundary. Journal of Differential Equations, 262( 5), 3317-3342. doi:10.1016/j.jde.2016.11.030
    • NLM

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2016.11.030
    • Vancouver

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.[citado 2024 nov. 10 ] Available from: https://doi.org/10.1016/j.jde.2016.11.030

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024