Filtros : "Polônia" "GONCALVES, DACIBERG LIMA" Removido: " GRU016" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, Michael R. Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 457-472, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.054. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2020). Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, 56( 2), 457-472. doi:10.12775/TMNA.2020.054
    • NLM

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2020.054
    • Vancouver

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2020.054
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS ABELIANOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEKIMPE, Karel e GONÇALVES, Daciberg Lima. The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 773-784, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.066. Acesso em: 06 nov. 2024.
    • APA

      Dekimpe, K., & Gonçalves, D. L. (2015). The R∞ property for Abelian groups. Topological Methods in Nonlinear Analysis, 46( 2), 773-784. doi:10.12775/TMNA.2015.066
    • NLM

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2015.066
    • Vancouver

      Dekimpe K, Gonçalves DL. The R∞ property for Abelian groups [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 773-784.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2015.066
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: GEOMETRIA EUCLIDIANA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e PENTEADO, Dirceu e VIEIRA, J. P. Fixed points on Klein bottle fiber bundles over the circle. Fundamenta Mathematicae, v. 203, n. 3, p. 263-292, 2009Tradução . . Disponível em: https://doi.org/10.4064/fm203-3-3. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2009). Fixed points on Klein bottle fiber bundles over the circle. Fundamenta Mathematicae, 203( 3), 263-292. doi:10.4064/fm203-3-3
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on Klein bottle fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2009 ; 203( 3): 263-292.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm203-3-3
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on Klein bottle fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2009 ; 203( 3): 263-292.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm203-3-3
  • Source: Topological Methods in Nonlinear analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KOSCHORKE, Ulrich. Nielsen coincidence theory of fibre-preserving maps and Dold´s fixed point index. Topological Methods in Nonlinear analysis, v. 33, n. 1, p. 85-193, 2009Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2009.007. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., & Koschorke, U. (2009). Nielsen coincidence theory of fibre-preserving maps and Dold´s fixed point index. Topological Methods in Nonlinear analysis, 33( 1), 85-193. doi:10.12775/TMNA.2009.007
    • NLM

      Gonçalves DL, Koschorke U. Nielsen coincidence theory of fibre-preserving maps and Dold´s fixed point index [Internet]. Topological Methods in Nonlinear analysis. 2009 ; 33( 1): 85-193.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2009.007
    • Vancouver

      Gonçalves DL, Koschorke U. Nielsen coincidence theory of fibre-preserving maps and Dold´s fixed point index [Internet]. Topological Methods in Nonlinear analysis. 2009 ; 33( 1): 85-193.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2009.007
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e PENTEADO, Dirceu e VIEIRA, João Peres. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles. Topological Methods in Nonlinear Analysis, v. 33, n. 2, p. 293-305, 2009Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2009.019. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2009). Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles. Topological Methods in Nonlinear Analysis, 33( 2), 293-305. doi:10.12775/TMNA.2009.019
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 2): 293-305.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2009.019
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Abelianized obstruction for fixed points of fiber-preserving maps of surface bundles [Internet]. Topological Methods in Nonlinear Analysis. 2009 ; 33( 2): 293-305.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/TMNA.2009.019
  • Source: Banach Center Publications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter Negai-Sing. A note on generalized equivariant homotopy groups. Banach Center Publications, v. 85, p. 179-185, 2009Tradução . . Disponível em: https://doi.org/10.4064/bc85-0-12. Acesso em: 06 nov. 2024.
    • APA

      Golasinski, M., Gonçalves, D. L., & Wong, P. N. -S. (2009). A note on generalized equivariant homotopy groups. Banach Center Publications, 85, 179-185. doi:10.4064/bc85-0-12
    • NLM

      Golasinski M, Gonçalves DL, Wong PN-S. A note on generalized equivariant homotopy groups [Internet]. Banach Center Publications. 2009 ; 85 179-185.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/bc85-0-12
    • Vancouver

      Golasinski M, Gonçalves DL, Wong PN-S. A note on generalized equivariant homotopy groups [Internet]. Banach Center Publications. 2009 ; 85 179-185.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/bc85-0-12
  • Source: Central European Journal of Mathematics. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e ANIZ, Claudemir. The minimizing of the Nielsen root classes. Central European Journal of Mathematics, v. 2, n. 1, p. 112-122, 2004Tradução . . Disponível em: https://doi.org/10.2478/bf02475955. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., & Aniz, C. (2004). The minimizing of the Nielsen root classes. Central European Journal of Mathematics, 2( 1), 112-122. doi:10.2478/bf02475955
    • NLM

      Gonçalves DL, Aniz C. The minimizing of the Nielsen root classes [Internet]. Central European Journal of Mathematics. 2004 ; 2( 1): 112-122.[citado 2024 nov. 06 ] Available from: https://doi.org/10.2478/bf02475955
    • Vancouver

      Gonçalves DL, Aniz C. The minimizing of the Nielsen root classes [Internet]. Central European Journal of Mathematics. 2004 ; 2( 1): 112-122.[citado 2024 nov. 06 ] Available from: https://doi.org/10.2478/bf02475955
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e PENTEADO, Dirceu e VIEIRA, João Peres. Fixed points on torus fiber bundles over the circle. Fundamenta Mathematicae, v. 183, n. 1, p. 1-38, 2004Tradução . . Disponível em: https://doi.org/10.4064/fm183-1-1. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2004). Fixed points on torus fiber bundles over the circle. Fundamenta Mathematicae, 183( 1), 1-38. doi:10.4064/fm183-1-1
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on torus fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2004 ; 183( 1): 1-38.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm183-1-1
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on torus fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2004 ; 183( 1): 1-38.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm183-1-1
  • Source: Central European Journal of Mathematics. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOGATYI, Semeon A. et al. Realization of primitive branched coverings over closed surfaces following the Hurwitz approach. Central European Journal of Mathematics, v. 1, n. 2, p. 184-197, 2003Tradução . . Disponível em: https://doi.org/10.2478/BF02476007. Acesso em: 06 nov. 2024.
    • APA

      Bogatyi, S. A., Gonçalves, D. L., Kudryavtseva, E. A., & Zieschang, H. (2003). Realization of primitive branched coverings over closed surfaces following the Hurwitz approach. Central European Journal of Mathematics, 1( 2), 184-197. doi:10.2478/BF02476007
    • NLM

      Bogatyi SA, Gonçalves DL, Kudryavtseva EA, Zieschang H. Realization of primitive branched coverings over closed surfaces following the Hurwitz approach [Internet]. Central European Journal of Mathematics. 2003 ; 1( 2): 184-197.[citado 2024 nov. 06 ] Available from: https://doi.org/10.2478/BF02476007
    • Vancouver

      Bogatyi SA, Gonçalves DL, Kudryavtseva EA, Zieschang H. Realization of primitive branched coverings over closed surfaces following the Hurwitz approach [Internet]. Central European Journal of Mathematics. 2003 ; 1( 2): 184-197.[citado 2024 nov. 06 ] Available from: https://doi.org/10.2478/BF02476007
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e BORSARI, Lucilia Daruiz. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, v. 21, n. 1, p. 115-130, 2003Tradução . . Disponível em: https://doi.org/10.12775/tmna.2003.007. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., & Borsari, L. D. (2003). Obstruction theory and minimal number of coincidences for maps from a complex into a manifold. Topological Methods in Nonlinear Analysis, 21( 1), 115-130. doi:10.12775/tmna.2003.007
    • NLM

      Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/tmna.2003.007
    • Vancouver

      Gonçalves DL, Borsari LD. Obstruction theory and minimal number of coincidences for maps from a complex into a manifold [Internet]. Topological Methods in Nonlinear Analysis. 2003 ; 21( 1): 115-130.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/tmna.2003.007
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, Michael R. Maps into the torus and minimal coincidence sets for homotopies. Fundamenta Mathematicae, v. 172, n. 2, p. 99-106, 2002Tradução . . Disponível em: https://doi.org/10.4064/fm172-2-1. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., & kelly, M. R. (2002). Maps into the torus and minimal coincidence sets for homotopies. Fundamenta Mathematicae, 172( 2), 99-106. doi:10.4064/fm172-2-1
    • NLM

      Gonçalves DL, kelly MR. Maps into the torus and minimal coincidence sets for homotopies [Internet]. Fundamenta Mathematicae. 2002 ; 172( 2): 99-106.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm172-2-1
    • Vancouver

      Gonçalves DL, kelly MR. Maps into the torus and minimal coincidence sets for homotopies [Internet]. Fundamenta Mathematicae. 2002 ; 172( 2): 99-106.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/fm172-2-1
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FAGUNDES, Pedro Luiz e GONÇALVES, Daciberg Lima. Fixed point indices of equivariant maps of certain Jiang spaces. Topological Methods in Nonlinear Analysis, v. 14, p. 151-158, 1999Tradução . . Disponível em: https://doi.org/10.12775/tmna.1999.025. Acesso em: 06 nov. 2024.
    • APA

      Fagundes, P. L., & Gonçalves, D. L. (1999). Fixed point indices of equivariant maps of certain Jiang spaces. Topological Methods in Nonlinear Analysis, 14, 151-158. doi:10.12775/tmna.1999.025
    • NLM

      Fagundes PL, Gonçalves DL. Fixed point indices of equivariant maps of certain Jiang spaces [Internet]. Topological Methods in Nonlinear Analysis. 1999 ; 14 151-158.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/tmna.1999.025
    • Vancouver

      Fagundes PL, Gonçalves DL. Fixed point indices of equivariant maps of certain Jiang spaces [Internet]. Topological Methods in Nonlinear Analysis. 1999 ; 14 151-158.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/tmna.1999.025
  • Source: Colloquium Mathematicum. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Comultiplications of the wedge of two Moore spaces. Colloquium Mathematicum, v. 76, n. 2, p. 229-242, 1998Tradução . . Disponível em: https://doi.org/10.4064/cm-76-2-229-242. Acesso em: 06 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (1998). Comultiplications of the wedge of two Moore spaces. Colloquium Mathematicum, 76( 2), 229-242. doi:10.4064/cm-76-2-229-242
    • NLM

      Golasinski M, Gonçalves DL. Comultiplications of the wedge of two Moore spaces [Internet]. Colloquium Mathematicum. 1998 ; 76( 2): 229-242.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/cm-76-2-229-242
    • Vancouver

      Golasinski M, Gonçalves DL. Comultiplications of the wedge of two Moore spaces [Internet]. Colloquium Mathematicum. 1998 ; 76( 2): 229-242.[citado 2024 nov. 06 ] Available from: https://doi.org/10.4064/cm-76-2-229-242
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e JEZIERSKI, Jersy. Lefschetz coincidence formula on non-orientable manifolds. Fundamenta Mathematicae, v. 153, n. 1, p. 1-23, 1997Tradução . . Disponível em: http://matwbn.icm.edu.pl/ksiazki/fm/fm153/fm15311.pdf. Acesso em: 06 nov. 2024.
    • APA

      Gonçalves, D. L., & Jezierski, J. (1997). Lefschetz coincidence formula on non-orientable manifolds. Fundamenta Mathematicae, 153( 1), 1-23. Recuperado de http://matwbn.icm.edu.pl/ksiazki/fm/fm153/fm15311.pdf
    • NLM

      Gonçalves DL, Jezierski J. Lefschetz coincidence formula on non-orientable manifolds [Internet]. Fundamenta Mathematicae. 1997 ; 153( 1): 1-23.[citado 2024 nov. 06 ] Available from: http://matwbn.icm.edu.pl/ksiazki/fm/fm153/fm15311.pdf
    • Vancouver

      Gonçalves DL, Jezierski J. Lefschetz coincidence formula on non-orientable manifolds [Internet]. Fundamenta Mathematicae. 1997 ; 153( 1): 1-23.[citado 2024 nov. 06 ] Available from: http://matwbn.icm.edu.pl/ksiazki/fm/fm153/fm15311.pdf
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Fabiano Gustavo Braga e GONÇALVES, Daciberg Lima. Real and complex homogeneous polynomial ordinary differential equations in n-space and m-ary real and complex non-associative algebras in n-space. Topological Methods in Nonlinear Analysis, v. 8, n. 2, p. 327-333, 1996Tradução . . Disponível em: https://doi.org/10.12775/tmna.1996.036. Acesso em: 06 nov. 2024.
    • APA

      Brito, F. G. B., & Gonçalves, D. L. (1996). Real and complex homogeneous polynomial ordinary differential equations in n-space and m-ary real and complex non-associative algebras in n-space. Topological Methods in Nonlinear Analysis, 8( 2), 327-333. doi:10.12775/tmna.1996.036
    • NLM

      Brito FGB, Gonçalves DL. Real and complex homogeneous polynomial ordinary differential equations in n-space and m-ary real and complex non-associative algebras in n-space [Internet]. Topological Methods in Nonlinear Analysis. 1996 ; 8( 2): 327-333.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/tmna.1996.036
    • Vancouver

      Brito FGB, Gonçalves DL. Real and complex homogeneous polynomial ordinary differential equations in n-space and m-ary real and complex non-associative algebras in n-space [Internet]. Topological Methods in Nonlinear Analysis. 1996 ; 8( 2): 327-333.[citado 2024 nov. 06 ] Available from: https://doi.org/10.12775/tmna.1996.036

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024