Filtros : "SILVA, MARCOS MARTINS ALEXANDRINO DA" "INAGAKI, MARCELO KODI" Limpar

Filtros



Refine with date range


  • Source: Differential Geometry and its Applications. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, TEORIA DE SISTEMAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins e ESCOBOSA, Fernando Maia Nardelli e INAGAKI, Marcelo Kodi. Traveling along horizontal broken geodesics of a homogeneous Finsler submersion. Differential Geometry and its Applications, v. 93, n. artigo 102106, p. 1-22, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2023.102106. Acesso em: 14 nov. 2024.
    • APA

      Alexandrino, M. M., Escobosa, F. M. N., & Inagaki, M. K. (2024). Traveling along horizontal broken geodesics of a homogeneous Finsler submersion. Differential Geometry and its Applications, 93( artigo 102106), 1-22. doi:10.1016/j.difgeo.2023.102106
    • NLM

      Alexandrino MM, Escobosa FMN, Inagaki MK. Traveling along horizontal broken geodesics of a homogeneous Finsler submersion [Internet]. Differential Geometry and its Applications. 2024 ; 93( artigo 102106): 1-22.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2023.102106
    • Vancouver

      Alexandrino MM, Escobosa FMN, Inagaki MK. Traveling along horizontal broken geodesics of a homogeneous Finsler submersion [Internet]. Differential Geometry and its Applications. 2024 ; 93( artigo 102106): 1-22.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.difgeo.2023.102106
  • Source: Annals of Global Analysis and Geometry. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALEXANDRINO, Marcos Martins et al. Lie groupoids and semi-local models of singular Riemannian foliations. Annals of Global Analysis and Geometry, v. 61, n. 3, p. 593-619, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10455-021-09813-1. Acesso em: 14 nov. 2024.
    • APA

      Alexandrino, M. M., Inagaki, M. K., Melo, M. de, & Struchiner, I. (2022). Lie groupoids and semi-local models of singular Riemannian foliations. Annals of Global Analysis and Geometry, 61( 3), 593-619. doi:10.1007/s10455-021-09813-1
    • NLM

      Alexandrino MM, Inagaki MK, Melo M de, Struchiner I. Lie groupoids and semi-local models of singular Riemannian foliations [Internet]. Annals of Global Analysis and Geometry. 2022 ; 61( 3): 593-619.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s10455-021-09813-1
    • Vancouver

      Alexandrino MM, Inagaki MK, Melo M de, Struchiner I. Lie groupoids and semi-local models of singular Riemannian foliations [Internet]. Annals of Global Analysis and Geometry. 2022 ; 61( 3): 593-619.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s10455-021-09813-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024