Filtros : "ICMC-SMA" "Holanda" "2022" Limpar

Filtros



Refine with date range


  • Source: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Assunto: ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORGE PÉREZ, Victor Hugo e LIMA, Pedro Henrique Apoliano Albuquerque. Coefficient ideals of the fiber cone. Bulletin des Sciences Mathématiques, v. No 2022, p. 1-16, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2022.103191. Acesso em: 11 nov. 2024.
    • APA

      Jorge Pérez, V. H., & Lima, P. H. A. A. (2022). Coefficient ideals of the fiber cone. Bulletin des Sciences Mathématiques, No 2022, 1-16. doi:10.1016/j.bulsci.2022.103191
    • NLM

      Jorge Pérez VH, Lima PHAA. Coefficient ideals of the fiber cone [Internet]. Bulletin des Sciences Mathématiques. 2022 ; No 2022 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2022.103191
    • Vancouver

      Jorge Pérez VH, Lima PHAA. Coefficient ideals of the fiber cone [Internet]. Bulletin des Sciences Mathématiques. 2022 ; No 2022 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.bulsci.2022.103191
  • Source: Differential Geometry and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, SUBVARIEDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JIMENEZ, Miguel Ibieta e TOJEIRO, Ruy. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, v. 81, p. 1-19, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.difgeo.2022.101862. Acesso em: 11 nov. 2024.
    • APA

      Jimenez, M. I., & Tojeiro, R. (2022). Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1'. Differential Geometry and its Applications, 81, 1-19. doi:10.1016/j.difgeo.2022.101862
    • NLM

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
    • Vancouver

      Jimenez MI, Tojeiro R. Umbilical submanifolds of 'H IND. K' x 'S IND. N-K+1' [Internet]. Differential Geometry and its Applications. 2022 ; 81 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.difgeo.2022.101862
  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: K-TEORIA, COHOMOLOGIA DE GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRZAII, Behrooz. Homology of 'GL IND. N' over infinite fields outside the stability range. Journal of Pure and Applied Algebra, v. 226, n. 5, p. 1-33, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2021.106916. Acesso em: 11 nov. 2024.
    • APA

      Mirzaii, B. (2022). Homology of 'GL IND. N' over infinite fields outside the stability range. Journal of Pure and Applied Algebra, 226( 5), 1-33. doi:10.1016/j.jpaa.2021.106916
    • NLM

      Mirzaii B. Homology of 'GL IND. N' over infinite fields outside the stability range [Internet]. Journal of Pure and Applied Algebra. 2022 ; 226( 5): 1-33.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106916
    • Vancouver

      Mirzaii B. Homology of 'GL IND. N' over infinite fields outside the stability range [Internet]. Journal of Pure and Applied Algebra. 2022 ; 226( 5): 1-33.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106916
  • Source: Journal of Geometry and Physics. Unidade: ICMC

    Subjects: GEOMETRIA HIPERBÓLICA E ELÍTICA, RELATIVIDADE (GEOMETRIA DIFERENCIAL)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Rafael e REIS JUNIOR, João dos e GROSSI, Carlos Henrique. On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, v. 180, p. 1-13, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.geomphys.2022.104629. Acesso em: 11 nov. 2024.
    • APA

      Ferreira, R., Reis Junior, J. dos, & Grossi, C. H. (2022). On the geometry of the kinematic space in special relativity. Journal of Geometry and Physics, 180, 1-13. doi:10.1016/j.geomphys.2022.104629
    • NLM

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
    • Vancouver

      Ferreira R, Reis Junior J dos, Grossi CH. On the geometry of the kinematic space in special relativity [Internet]. Journal of Geometry and Physics. 2022 ; 180 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.geomphys.2022.104629
  • Source: Asymptotic Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DE CONTROLE, TEORIA DE SISTEMAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, v. 129, n. 1, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.3233/ASY-211719. Acesso em: 11 nov. 2024.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2022). Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, 129( 1), 1-27. doi:10.3233/ASY-211719
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3233/ASY-211719
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3233/ASY-211719
  • Source: Positivity. Unidade: ICMC

    Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS, ESPAÇOS DE SOBOLEV, APROXIMAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRIJO, Angelina O e JORDÃO, Thaís e SANTOS, Cristiano dos. Inequalities for moduli of smoothness on two-point homogeneous spaces. Positivity, v. 26, n. 3, p. 1-16, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11117-022-00870-9. Acesso em: 11 nov. 2024.
    • APA

      Carrijo, A. O., Jordão, T., & Santos, C. dos. (2022). Inequalities for moduli of smoothness on two-point homogeneous spaces. Positivity, 26( 3), 1-16. doi:10.1007/s11117-022-00870-9
    • NLM

      Carrijo AO, Jordão T, Santos C dos. Inequalities for moduli of smoothness on two-point homogeneous spaces [Internet]. Positivity. 2022 ; 26( 3): 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11117-022-00870-9
    • Vancouver

      Carrijo AO, Jordão T, Santos C dos. Inequalities for moduli of smoothness on two-point homogeneous spaces [Internet]. Positivity. 2022 ; 26( 3): 1-16.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s11117-022-00870-9
  • Source: Annals of Global Analysis and Geometry. Unidade: ICMC

    Subjects: GEOMETRIA GLOBAL, EQUAÇÕES DIFERENCIAIS PARCIAIS, SUBVARIEDADES, VALORES PRÓPRIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando e ROTH, Julien e UPADHYAY, Abhitosh. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, v. 62, n. 3, p. 489-505, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10455-022-09862-0. Acesso em: 11 nov. 2024.
    • APA

      Manfio, F., Roth, J., & Upadhyay, A. (2022). Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds. Annals of Global Analysis and Geometry, 62( 3), 489-505. doi:10.1007/s10455-022-09862-0
    • NLM

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-022-09862-0
    • Vancouver

      Manfio F, Roth J, Upadhyay A. Extrinsic eigenvalues upper bounds for submanifolds in weighted manifolds [Internet]. Annals of Global Analysis and Geometry. 2022 ; 62( 3): 489-505.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10455-022-09862-0

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024