Filtros : "Oliva, Sérgio Muniz" "Indexado no MathSciNet" Removido: "Reabilitação Oral" Limpar

Filtros



Refine with date range


  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: SÉRIES DE FOURIER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Michele de Oliveira e OLIVA, Sérgio Muniz. An extension problem related to the square root of the Laplacian with Neumann boundary condition. Electronic Journal of Differential Equations, v. 2014, n. 12, p. 1-18, 2014Tradução . . Disponível em: http://ejde.math.txstate.edu/Volumes/2014/12/alves.pdf. Acesso em: 18 nov. 2024.
    • APA

      Alves, M. de O., & Oliva, S. M. (2014). An extension problem related to the square root of the Laplacian with Neumann boundary condition. Electronic Journal of Differential Equations, 2014( 12), 1-18. Recuperado de http://ejde.math.txstate.edu/Volumes/2014/12/alves.pdf
    • NLM

      Alves M de O, Oliva SM. An extension problem related to the square root of the Laplacian with Neumann boundary condition [Internet]. Electronic Journal of Differential Equations. 2014 ; 2014( 12): 1-18.[citado 2024 nov. 18 ] Available from: http://ejde.math.txstate.edu/Volumes/2014/12/alves.pdf
    • Vancouver

      Alves M de O, Oliva SM. An extension problem related to the square root of the Laplacian with Neumann boundary condition [Internet]. Electronic Journal of Differential Equations. 2014 ; 2014( 12): 1-18.[citado 2024 nov. 18 ] Available from: http://ejde.math.txstate.edu/Volumes/2014/12/alves.pdf
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Greiciane da Silva e OLIVA, Sérgio Muniz. Asymptotic behavior of a reaction-diffusion problem with delay and reaction term concentrated in the boundary. São Paulo Journal of Mathematical Sciences, v. 5, n. 2, p. 347-376, 2011Tradução . . Disponível em: https://doi.org/10.11606/issn.2316-9028.v5i2p347-376. Acesso em: 18 nov. 2024.
    • APA

      Aragão, G. da S., & Oliva, S. M. (2011). Asymptotic behavior of a reaction-diffusion problem with delay and reaction term concentrated in the boundary. São Paulo Journal of Mathematical Sciences, 5( 2), 347-376. doi:10.11606/issn.2316-9028.v5i2p347-376
    • NLM

      Aragão G da S, Oliva SM. Asymptotic behavior of a reaction-diffusion problem with delay and reaction term concentrated in the boundary [Internet]. São Paulo Journal of Mathematical Sciences. 2011 ; 5( 2): 347-376.[citado 2024 nov. 18 ] Available from: https://doi.org/10.11606/issn.2316-9028.v5i2p347-376
    • Vancouver

      Aragão G da S, Oliva SM. Asymptotic behavior of a reaction-diffusion problem with delay and reaction term concentrated in the boundary [Internet]. São Paulo Journal of Mathematical Sciences. 2011 ; 5( 2): 347-376.[citado 2024 nov. 18 ] Available from: https://doi.org/10.11606/issn.2316-9028.v5i2p347-376
  • Source: International Journal of Bifurcation and Chaos. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e CÓNSUL, Neus e OLIVA, Sérgio Muniz. On the supercriticality of the first Hopf bifurcation in a delay boundary problem. International Journal of Bifurcation and Chaos, v. 20, n. 9, p. 2955-2963, 2010Tradução . . Disponível em: https://doi.org/10.1142/S0218127410027507. Acesso em: 18 nov. 2024.
    • APA

      Arrieta, J. M., Cónsul, N., & Oliva, S. M. (2010). On the supercriticality of the first Hopf bifurcation in a delay boundary problem. International Journal of Bifurcation and Chaos, 20( 9), 2955-2963. doi:10.1142/S0218127410027507
    • NLM

      Arrieta JM, Cónsul N, Oliva SM. On the supercriticality of the first Hopf bifurcation in a delay boundary problem [Internet]. International Journal of Bifurcation and Chaos. 2010 ; 20( 9): 2955-2963.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0218127410027507
    • Vancouver

      Arrieta JM, Cónsul N, Oliva SM. On the supercriticality of the first Hopf bifurcation in a delay boundary problem [Internet]. International Journal of Bifurcation and Chaos. 2010 ; 20( 9): 2955-2963.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1142/S0218127410027507
  • Source: Journal of Mathematical Analysis and its Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e CÓNSUL, Neus e OLIVA, Sérgio Muniz. Cascades of Hopf bifurcations from boundary delay. Journal of Mathematical Analysis and its Applications, v. 361, n. 1, p. 19-37, 2010Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2009.09.018. Acesso em: 18 nov. 2024.
    • APA

      Arrieta, J. M., Cónsul, N., & Oliva, S. M. (2010). Cascades of Hopf bifurcations from boundary delay. Journal of Mathematical Analysis and its Applications, 361( 1), 19-37. doi:10.1016/j.jmaa.2009.09.018
    • NLM

      Arrieta JM, Cónsul N, Oliva SM. Cascades of Hopf bifurcations from boundary delay [Internet]. Journal of Mathematical Analysis and its Applications. 2010 ; 361( 1): 19-37.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2009.09.018
    • Vancouver

      Arrieta JM, Cónsul N, Oliva SM. Cascades of Hopf bifurcations from boundary delay [Internet]. Journal of Mathematical Analysis and its Applications. 2010 ; 361( 1): 19-37.[citado 2024 nov. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2009.09.018
  • Source: Discrete and Continuous Dynamical Systems. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOLEDO, Maria do Carmo Pacheco de e OLIVA, Sérgio Muniz. A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics. Discrete and Continuous Dynamical Systems, v. 23, n. 3, p. 1041-1060, 2009Tradução . . Disponível em: https://doi.org/10.3934/dcds.2009.23.1041. Acesso em: 18 nov. 2024.
    • APA

      Toledo, M. do C. P. de, & Oliva, S. M. (2009). A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics. Discrete and Continuous Dynamical Systems, 23( 3), 1041-1060. doi:10.3934/dcds.2009.23.1041
    • NLM

      Toledo M do CP de, Oliva SM. A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics [Internet]. Discrete and Continuous Dynamical Systems. 2009 ; 23( 3): 1041-1060.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcds.2009.23.1041
    • Vancouver

      Toledo M do CP de, Oliva SM. A discretization scheme for an one-dimensional reaction-diffusion equation with delay and its dynamics [Internet]. Discrete and Continuous Dynamical Systems. 2009 ; 23( 3): 1041-1060.[citado 2024 nov. 18 ] Available from: https://doi.org/10.3934/dcds.2009.23.1041

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024