Filtros : "Bonotto, Everaldo de Mello" "Santiago, Eric B" Limpar

Filtros



Refine with date range


  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: ATRATORES, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, v. 90, p. 1-47, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00245-024-10170-1. Acesso em: 12 nov. 2024.
    • APA

      Bonotto, E. de M., Carvalho, A. N. de, Nascimento, M. J. D., & Santiago, E. B. (2024). Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, 90, 1-47. doi:10.1007/s00245-024-10170-1
    • NLM

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
    • Vancouver

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 12 nov. 2024.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2024 nov. 12 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024