Filtros : "Polônia" "Indexado no ISI - Institute for Scientific Information" Removido: "1994" Limpar

Filtros



Refine with date range


  • Source: Acta Applicandae Mathematicae. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e USTIMENKO, Vasly. On small world semiplanes with generalised Schubert cells. Acta Applicandae Mathematicae, v. 98, n. 1, p. 47-61, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10440-007-9144-8. Acesso em: 15 nov. 2024.
    • APA

      Futorny, V., & Ustimenko, V. (2007). On small world semiplanes with generalised Schubert cells. Acta Applicandae Mathematicae, 98( 1), 47-61. doi:10.1007/s10440-007-9144-8
    • NLM

      Futorny V, Ustimenko V. On small world semiplanes with generalised Schubert cells [Internet]. Acta Applicandae Mathematicae. 2007 ; 98( 1): 47-61.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10440-007-9144-8
    • Vancouver

      Futorny V, Ustimenko V. On small world semiplanes with generalised Schubert cells [Internet]. Acta Applicandae Mathematicae. 2007 ; 98( 1): 47-61.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10440-007-9144-8
  • Source: Acta Mathematica Sinica - English series. Unidade: IME

    Assunto: TEORIA DA DIMENSÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e JEZIERSKI, Jerzy e WONG, Peter Negai-Sing. Obstruction theory and coincidences in positive codimension. Acta Mathematica Sinica - English series, v. 22, n. 5., p. 1591-1602, 2006Tradução . . Disponível em: https://doi.org/10.1007/s10114-005-0797-9. Acesso em: 15 nov. 2024.
    • APA

      Gonçalves, D. L., Jezierski, J., & Wong, P. N. -S. (2006). Obstruction theory and coincidences in positive codimension. Acta Mathematica Sinica - English series, 22( 5.), 1591-1602. doi:10.1007/s10114-005-0797-9
    • NLM

      Gonçalves DL, Jezierski J, Wong PN-S. Obstruction theory and coincidences in positive codimension [Internet]. Acta Mathematica Sinica - English series. 2006 ; 22( 5.): 1591-1602.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10114-005-0797-9
    • Vancouver

      Gonçalves DL, Jezierski J, Wong PN-S. Obstruction theory and coincidences in positive codimension [Internet]. Acta Mathematica Sinica - English series. 2006 ; 22( 5.): 1591-1602.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1007/s10114-005-0797-9
  • Source: Topology and its Applications. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i). Topology and its Applications, v. 146/147, p. 451-470, 2005Tradução . . Disponível em: https://doi.org/10.2307/3062102. Acesso em: 15 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2005). Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i). Topology and its Applications, 146/147, 451-470. doi:10.2307/3062102
    • NLM

      Golasinski M, Gonçalves DL. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i) [Internet]. Topology and its Applications. 2005 ; 146/147 451-470.[citado 2024 nov. 15 ] Available from: https://doi.org/10.2307/3062102
    • Vancouver

      Golasinski M, Gonçalves DL. Spherical space forms - Homotopy types and self-equivalences for the groups Z/a x Z/b and Z/a x (Z/b x Q(2)i) [Internet]. Topology and its Applications. 2005 ; 146/147 451-470.[citado 2024 nov. 15 ] Available from: https://doi.org/10.2307/3062102
  • Source: Combinatorics, Probability & Computing. Unidade: IME

    Assunto: TEORIA DOS GRAFOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRIEDGUT, Ehud et al. Ramsey games against a one-armed bandit. Combinatorics, Probability & Computing, v. 12, n. 5-6, p. 515-545, 2003Tradução . . Disponível em: https://doi.org/10.1017/S0963548303005881. Acesso em: 15 nov. 2024.
    • APA

      Friedgut, E., Kohayakawa, Y., Rodl, V., Rucinski, A., & Tetali, P. (2003). Ramsey games against a one-armed bandit. Combinatorics, Probability & Computing, 12( 5-6), 515-545. doi:10.1017/S0963548303005881
    • NLM

      Friedgut E, Kohayakawa Y, Rodl V, Rucinski A, Tetali P. Ramsey games against a one-armed bandit [Internet]. Combinatorics, Probability & Computing. 2003 ; 12( 5-6): 515-545.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1017/S0963548303005881
    • Vancouver

      Friedgut E, Kohayakawa Y, Rodl V, Rucinski A, Tetali P. Ramsey games against a one-armed bandit [Internet]. Combinatorics, Probability & Computing. 2003 ; 12( 5-6): 515-545.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1017/S0963548303005881
  • Source: Pacific Journal of Mathematics. Unidade: IME

    Assunto: HOMOTOPIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Postnikov towers and Gottlieb groups of orbit spaces. Pacific Journal of Mathematics, v. 197, n. 2, p. 291-300, 2001Tradução . . Disponível em: https://doi.org/10.2140/pjm.2001.197.291. Acesso em: 15 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (2001). Postnikov towers and Gottlieb groups of orbit spaces. Pacific Journal of Mathematics, 197( 2), 291-300. doi:10.2140/pjm.2001.197.291
    • NLM

      Golasinski M, Gonçalves DL. Postnikov towers and Gottlieb groups of orbit spaces [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 291-300.[citado 2024 nov. 15 ] Available from: https://doi.org/10.2140/pjm.2001.197.291
    • Vancouver

      Golasinski M, Gonçalves DL. Postnikov towers and Gottlieb groups of orbit spaces [Internet]. Pacific Journal of Mathematics. 2001 ; 197( 2): 291-300.[citado 2024 nov. 15 ] Available from: https://doi.org/10.2140/pjm.2001.197.291
  • Source: Bulletin des Sciences Mathematiques. Unidade: IME

    Subjects: TEORIAS DE HOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASINSKI, Marek e GONÇALVES, Daciberg Lima. Generalized Eilenberg-Zilber type theorem and its equivariant applications. Bulletin des Sciences Mathematiques, v. 123, n. 4, p. 285-298, 1999Tradução . . Disponível em: https://doi.org/10.1016/S0007-4497(99)00003-2. Acesso em: 15 nov. 2024.
    • APA

      Golasinski, M., & Gonçalves, D. L. (1999). Generalized Eilenberg-Zilber type theorem and its equivariant applications. Bulletin des Sciences Mathematiques, 123( 4), 285-298. doi:10.1016/S0007-4497(99)00003-2
    • NLM

      Golasinski M, Gonçalves DL. Generalized Eilenberg-Zilber type theorem and its equivariant applications [Internet]. Bulletin des Sciences Mathematiques. 1999 ; 123( 4): 285-298.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/S0007-4497(99)00003-2
    • Vancouver

      Golasinski M, Gonçalves DL. Generalized Eilenberg-Zilber type theorem and its equivariant applications [Internet]. Bulletin des Sciences Mathematiques. 1999 ; 123( 4): 285-298.[citado 2024 nov. 15 ] Available from: https://doi.org/10.1016/S0007-4497(99)00003-2

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024