Filtros : "Japão" "ICMC-SMA" Removido: "Astrobiology" Limpar

Filtros



Refine with date range


  • Source: Research in the Mathematical Sciences. Conference titles: International Workshop on Real and Complex Singularities. Unidade: ICMC

    Assunto: SINGULARIDADES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Proceedings of the 17th International Workshop on Real and Complex Singularities. [Editorial]. Research in the Mathematical Sciences. Cham: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s40687-024-00465-8. Acesso em: 03 nov. 2024. , 2024
    • APA

      Proceedings of the 17th International Workshop on Real and Complex Singularities. [Editorial]. (2024). Proceedings of the 17th International Workshop on Real and Complex Singularities. [Editorial]. Research in the Mathematical Sciences. Cham: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1007/s40687-024-00465-8
    • NLM

      Proceedings of the 17th International Workshop on Real and Complex Singularities. [Editorial] [Internet]. Research in the Mathematical Sciences. 2024 ; 11( 3): 1-4.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s40687-024-00465-8
    • Vancouver

      Proceedings of the 17th International Workshop on Real and Complex Singularities. [Editorial] [Internet]. Research in the Mathematical Sciences. 2024 ; 11( 3): 1-4.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s40687-024-00465-8
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, GRUPOS ABELIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e FUKASAWA, Satoru. An elementary abelian p-cover of the Hermitian curve with many automorphisms. Mathematische Zeitschrift, v. 302, n. 2, p. 695-706, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-022-03083-8. Acesso em: 03 nov. 2024.
    • APA

      Borges, H., & Fukasawa, S. (2022). An elementary abelian p-cover of the Hermitian curve with many automorphisms. Mathematische Zeitschrift, 302( 2), 695-706. doi:10.1007/s00209-022-03083-8
    • NLM

      Borges H, Fukasawa S. An elementary abelian p-cover of the Hermitian curve with many automorphisms [Internet]. Mathematische Zeitschrift. 2022 ; 302( 2): 695-706.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00209-022-03083-8
    • Vancouver

      Borges H, Fukasawa S. An elementary abelian p-cover of the Hermitian curve with many automorphisms [Internet]. Mathematische Zeitschrift. 2022 ; 302( 2): 695-706.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00209-022-03083-8
  • Source: Osaka Journal of Mathematics. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, GEOMETRIA SIMPLÉTICA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Curves in a spacelike hypersurface in Minkowski space-time. Osaka Journal of Mathematics, v. 58, n. 4, p. 947-966, 2021Tradução . . Disponível em: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4. Acesso em: 03 nov. 2024.
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2021). Curves in a spacelike hypersurface in Minkowski space-time. Osaka Journal of Mathematics, 58( 4), 947-966. Recuperado de https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Curves in a spacelike hypersurface in Minkowski space-time [Internet]. Osaka Journal of Mathematics. 2021 ; 58( 4): 947-966.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Curves in a spacelike hypersurface in Minkowski space-time [Internet]. Osaka Journal of Mathematics. 2021 ; 58( 4): 947-966.[citado 2024 nov. 03 ] Available from: https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-58/issue-4
  • Source: Finite Fields and their Applications. Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, TEORIA DE GALOIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e FUKASAWA, Satoru. Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, v. 61, n. Ja 2020, p. 1-8, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.ffa.2019.101579. Acesso em: 03 nov. 2024.
    • APA

      Borges, H., & Fukasawa, S. (2020). Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, 61( Ja 2020), 1-8. doi:10.1016/j.ffa.2019.101579
    • NLM

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
    • Vancouver

      Borges H, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/j.ffa.2019.101579
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL NÃO EUCLIDIANA, TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASEDOU, Masaki e NABARRO, Ana Claudia e RUAS, Maria Aparecida Soares. Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space. Bulletin of the Brazilian Mathematical Society : New Series, v. 51, n. 1, p. 293-315, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00574-019-00153-0. Acesso em: 03 nov. 2024.
    • APA

      Kasedou, M., Nabarro, A. C., & Ruas, M. A. S. (2020). Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space. Bulletin of the Brazilian Mathematical Society : New Series, 51( 1), 293-315. doi:10.1007/s00574-019-00153-0
    • NLM

      Kasedou M, Nabarro AC, Ruas MAS. Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 1): 293-315.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00574-019-00153-0
    • Vancouver

      Kasedou M, Nabarro AC, Ruas MAS. Singular 4-webs of asymptotic lines of spacelike surfaces in de sitter 5-space [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 1): 293-315.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00574-019-00153-0
  • Source: Bulletin of the Brazilian Mathematical Society. Unidade: ICMC

    Assunto: CURVAS ALGÉBRICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Herivelto e HOMMA, Masaaki. Points on singular Frobenius nonclassical curves. Bulletin of the Brazilian Mathematical Society, v. 48, n. 1, p. 93-101, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00574-016-0008-6. Acesso em: 03 nov. 2024.
    • APA

      Borges, H., & Homma, M. (2017). Points on singular Frobenius nonclassical curves. Bulletin of the Brazilian Mathematical Society, 48( 1), 93-101. doi:10.1007/s00574-016-0008-6
    • NLM

      Borges H, Homma M. Points on singular Frobenius nonclassical curves [Internet]. Bulletin of the Brazilian Mathematical Society. 2017 ; 48( 1): 93-101.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00574-016-0008-6
    • Vancouver

      Borges H, Homma M. Points on singular Frobenius nonclassical curves [Internet]. Bulletin of the Brazilian Mathematical Society. 2017 ; 48( 1): 93-101.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00574-016-0008-6
  • Source: Journal of Singularities. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. Journal of Singularities, v. 16, p. 180-193, 2017Tradução . . Disponível em: https://doi.org/10.5427/jsing.2017.16h. Acesso em: 03 nov. 2024.
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2017). Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. Journal of Singularities, 16, 180-193. doi:10.5427/jsing.2017.16h
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. Journal of Singularities. 2017 ; 16 180-193.[citado 2024 nov. 03 ] Available from: https://doi.org/10.5427/jsing.2017.16h
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. Journal of Singularities. 2017 ; 16 180-193.[citado 2024 nov. 03 ] Available from: https://doi.org/10.5427/jsing.2017.16h
  • Source: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: ICMC

    Subjects: SINGULARIDADES, SUPERFÍCIES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASEGAWA, Masaru e TARI, Farid. On umbilic points on newly born surfaces. Bulletin of the Brazilian Mathematical Society, New Series, v. 48, n. 4, p. 679-696, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00574-017-0037-9. Acesso em: 03 nov. 2024.
    • APA

      Hasegawa, M., & Tari, F. (2017). On umbilic points on newly born surfaces. Bulletin of the Brazilian Mathematical Society, New Series, 48( 4), 679-696. doi:10.1007/s00574-017-0037-9
    • NLM

      Hasegawa M, Tari F. On umbilic points on newly born surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2017 ; 48( 4): 679-696.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00574-017-0037-9
    • Vancouver

      Hasegawa M, Tari F. On umbilic points on newly born surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2017 ; 48( 4): 679-696.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00574-017-0037-9
  • Source: Annales de L'Institut Fourier. Unidade: ICMC

    Subjects: SINGULARIDADES, FIBRAÇÕES, TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO DOS SANTOS, Raimundo Nonato et al. New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations. Annales de L'Institut Fourier, v. 66, n. 1, p. 83-104, 2016Tradução . . Disponível em: https://doi.org/10.5802/aif.3006. Acesso em: 03 nov. 2024.
    • APA

      Araújo dos Santos, R. N., Hohlenwerger, M. A. B., Saeki, O., & Souza, T. O. (2016). New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations. Annales de L'Institut Fourier, 66( 1), 83-104. doi:10.5802/aif.3006
    • NLM

      Araújo dos Santos RN, Hohlenwerger MAB, Saeki O, Souza TO. New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations [Internet]. Annales de L'Institut Fourier. 2016 ; 66( 1): 83-104.[citado 2024 nov. 03 ] Available from: https://doi.org/10.5802/aif.3006
    • Vancouver

      Araújo dos Santos RN, Hohlenwerger MAB, Saeki O, Souza TO. New examples of Neuwirth–Stallings pairs and non-trivial real Milnor fibrations [Internet]. Annales de L'Institut Fourier. 2016 ; 66( 1): 83-104.[citado 2024 nov. 03 ] Available from: https://doi.org/10.5802/aif.3006
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NISHIMURA, T et al. Liftable vector fields over corank one multigerms. Mathematische Annalen, v. 366, n. 1, p. 573-611, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00208-015-1340-7. Acesso em: 03 nov. 2024.
    • APA

      Nishimura, T., Sinha, R. O., Ruas, M. A. S., & Wik Atique, R. (2016). Liftable vector fields over corank one multigerms. Mathematische Annalen, 366( 1), 573-611. doi:10.1007/s00208-015-1340-7
    • NLM

      Nishimura T, Sinha RO, Ruas MAS, Wik Atique R. Liftable vector fields over corank one multigerms [Internet]. Mathematische Annalen. 2016 ; 366( 1): 573-611.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00208-015-1340-7
    • Vancouver

      Nishimura T, Sinha RO, Ruas MAS, Wik Atique R. Liftable vector fields over corank one multigerms [Internet]. Mathematische Annalen. 2016 ; 366( 1): 573-611.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1007/s00208-015-1340-7
  • Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi e NABARRO, Ana Claudia e SACRAMENTO, Andrea de Jesus. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf. Acesso em: 03 nov. 2024. , 2016
    • APA

      Izumiya, S., Nabarro, A. C., & Sacramento, A. de J. (2016). Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf
    • NLM

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. 2016 ;[citado 2024 nov. 03 ] Available from: https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf
    • Vancouver

      Izumiya S, Nabarro AC, Sacramento A de J. Horospherical and hyperbolic dual surfaces of spacelike curves in de Sitter space [Internet]. 2016 ;[citado 2024 nov. 03 ] Available from: https://repositorio.usp.br/directbitstream/482b53f8-8433-4867-9f7b-2af045bff965/NOTAS_ICMC_SERIE_MAT_428_2016.pdf
  • Unidade: ICMC

    Subjects: SINGULARIDADES, GEOMETRIA DIFERENCIAL, TEORIA DAS SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IZUMIYA, Shyuichi et al. Differential geometry from a singularity theory viewpoint. . Hackensack: World Scientific. Disponível em: https://doi.org/10.1142/9108. Acesso em: 03 nov. 2024. , 2015
    • APA

      Izumiya, S., Fuster, M. D. C. R., Ruas, M. A. S., & Tari, F. (2015). Differential geometry from a singularity theory viewpoint. Hackensack: World Scientific. doi:10.1142/9108
    • NLM

      Izumiya S, Fuster MDCR, Ruas MAS, Tari F. Differential geometry from a singularity theory viewpoint [Internet]. 2015 ;[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/9108
    • Vancouver

      Izumiya S, Fuster MDCR, Ruas MAS, Tari F. Differential geometry from a singularity theory viewpoint [Internet]. 2015 ;[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/9108
  • Source: Topology and Its Applications. Unidades: IME, ICMC

    Assunto: TOPOLOGIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRARA, Vera Lucia e RUAS, Maria Aparecida Soares e SAEKI, Osamu. Maps of manifolds into the plane which lift to standard embeddings in codimension two. Topology and Its Applications, v. 110, n. 3, p. 265-287, 2001Tradução . . Disponível em: https://doi.org/10.1016/s0166-8641(99)00181-9. Acesso em: 03 nov. 2024.
    • APA

      Carrara, V. L., Ruas, M. A. S., & Saeki, O. (2001). Maps of manifolds into the plane which lift to standard embeddings in codimension two. Topology and Its Applications, 110( 3), 265-287. doi:10.1016/s0166-8641(99)00181-9
    • NLM

      Carrara VL, Ruas MAS, Saeki O. Maps of manifolds into the plane which lift to standard embeddings in codimension two [Internet]. Topology and Its Applications. 2001 ; 110( 3): 265-287.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/s0166-8641(99)00181-9
    • Vancouver

      Carrara VL, Ruas MAS, Saeki O. Maps of manifolds into the plane which lift to standard embeddings in codimension two [Internet]. Topology and Its Applications. 2001 ; 110( 3): 265-287.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1016/s0166-8641(99)00181-9
  • Unidades: IME, ICMC

    Assunto: GEOMETRIA DIFERENCIAL

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRARA, Vera Lucia e RUAS, Maria Aparecida Soares e SAEKI, Osamu A. A note on codimension two submanifolds with at most four critical points. . Sao Paulo: IME-USP. Disponível em: https://repositorio.usp.br/directbitstream/0f78d534-2764-4ada-b74d-0c56c47e3775/885865.pdf. Acesso em: 03 nov. 2024. , 1994
    • APA

      Carrara, V. L., Ruas, M. A. S., & Saeki, O. A. (1994). A note on codimension two submanifolds with at most four critical points. Sao Paulo: IME-USP. Recuperado de https://repositorio.usp.br/directbitstream/0f78d534-2764-4ada-b74d-0c56c47e3775/885865.pdf
    • NLM

      Carrara VL, Ruas MAS, Saeki OA. A note on codimension two submanifolds with at most four critical points [Internet]. 1994 ;[citado 2024 nov. 03 ] Available from: https://repositorio.usp.br/directbitstream/0f78d534-2764-4ada-b74d-0c56c47e3775/885865.pdf
    • Vancouver

      Carrara VL, Ruas MAS, Saeki OA. A note on codimension two submanifolds with at most four critical points [Internet]. 1994 ;[citado 2024 nov. 03 ] Available from: https://repositorio.usp.br/directbitstream/0f78d534-2764-4ada-b74d-0c56c47e3775/885865.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024