Filtros : "Japão" "BIOQUÍMICA" Removido: "gp" Limpar

Filtros



Refine with date range


  • Source: Cell Transplantation. Conference titles: Annual Meeting of the American Society for Neural Therapy and Repair. Unidade: IQ

    Subjects: FATORES DE TRANSCRIÇÃO, BIOQUÍMICA, SISTEMA NERVOSO

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GLASER, Talita e KAGEYAMA, R e ULRICH, Henning. Intracellular calcium and neural transcription factor expression oscillations coding the fate of neurogenesis. Cell Transplantation. New York: Instituto de Química, Universidade de São Paulo. . Acesso em: 03 nov. 2024. , 2016
    • APA

      Glaser, T., Kageyama, R., & Ulrich, H. (2016). Intracellular calcium and neural transcription factor expression oscillations coding the fate of neurogenesis. Cell Transplantation. New York: Instituto de Química, Universidade de São Paulo.
    • NLM

      Glaser T, Kageyama R, Ulrich H. Intracellular calcium and neural transcription factor expression oscillations coding the fate of neurogenesis. Cell Transplantation. 2016 ; 25 758.[citado 2024 nov. 03 ]
    • Vancouver

      Glaser T, Kageyama R, Ulrich H. Intracellular calcium and neural transcription factor expression oscillations coding the fate of neurogenesis. Cell Transplantation. 2016 ; 25 758.[citado 2024 nov. 03 ]
  • Source: BMC Systems Biology. Unidade: IME

    Subjects: BIOQUÍMICA, ANÁLISE DE DADOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. Functional clustering of time series gene expression data by Granger causality. BMC Systems Biology, v. 6, n. 137, p. 1-12, 2012Tradução . . Disponível em: https://doi.org/10.1186/1752-0509-6-137. Acesso em: 03 nov. 2024.
    • APA

      Fujita, A., Severino, P., Kaname, K., Sato, J. R., Patriota, A. G., & Miyano, S. (2012). Functional clustering of time series gene expression data by Granger causality. BMC Systems Biology, 6( 137), 1-12. doi:10.1186/1752-0509-6-137
    • NLM

      Fujita A, Severino P, Kaname K, Sato JR, Patriota AG, Miyano S. Functional clustering of time series gene expression data by Granger causality [Internet]. BMC Systems Biology. 2012 ; 6( 137): 1-12.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1186/1752-0509-6-137
    • Vancouver

      Fujita A, Severino P, Kaname K, Sato JR, Patriota AG, Miyano S. Functional clustering of time series gene expression data by Granger causality [Internet]. BMC Systems Biology. 2012 ; 6( 137): 1-12.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1186/1752-0509-6-137
  • Source: IEEE/ACM Transactions on Computational Biology and Bioinformatics. Unidades: IME, IQ

    Subjects: REGULAÇÃO GÊNICA, BIOQUÍMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. Inferring contagion in regulatory networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 8, n. 2, p. 570-576, 2011Tradução . . Disponível em: https://doi.org/10.1109/tcbb.2010.40. Acesso em: 03 nov. 2024.
    • APA

      Fujita, A., Sato, J. R., Demasi, M. A. A., Yamaguchi, R., Shimamura, T., Ferreira, C. E., et al. (2011). Inferring contagion in regulatory networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8( 2), 570-576. doi:10.1109/tcbb.2010.40
    • NLM

      Fujita A, Sato JR, Demasi MAA, Yamaguchi R, Shimamura T, Ferreira CE, Sogayar MC, Miyano S. Inferring contagion in regulatory networks [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011 ; 8( 2): 570-576.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1109/tcbb.2010.40
    • Vancouver

      Fujita A, Sato JR, Demasi MAA, Yamaguchi R, Shimamura T, Ferreira CE, Sogayar MC, Miyano S. Inferring contagion in regulatory networks [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011 ; 8( 2): 570-576.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1109/tcbb.2010.40
  • Source: Journal of Bioinformatics and Computational Biology. Unidades: IQ, IME

    Subjects: EXPRESSÃO GÊNICA, BIOQUÍMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis. Journal of Bioinformatics and Computational Biology, v. 7, n. 4, p. 663-684, 2009Tradução . . Disponível em: https://doi.org/10.1142/S0219720009004230. Acesso em: 03 nov. 2024.
    • APA

      Fujita, A., Sato, J. R., Demasi, M. A. A., Sogayar, M. C., Ferreira, C. E., & Miyano, S. (2009). Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis. Journal of Bioinformatics and Computational Biology, 7( 4), 663-684. doi:10.1142/S0219720009004230
    • NLM

      Fujita A, Sato JR, Demasi MAA, Sogayar MC, Ferreira CE, Miyano S. Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis [Internet]. Journal of Bioinformatics and Computational Biology. 2009 ; 7( 4): 663-684.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0219720009004230
    • Vancouver

      Fujita A, Sato JR, Demasi MAA, Sogayar MC, Ferreira CE, Miyano S. Comparing Pearson, Spearman and Hoeffding's D measure for gene expression association analysis [Internet]. Journal of Bioinformatics and Computational Biology. 2009 ; 7( 4): 663-684.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/S0219720009004230
  • Source: Journal of Bioinformatics and Computational Biology. Unidades: EACH, IQ, IME

    Subjects: EXPRESSÃO GÊNICA, BIOQUÍMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUJITA, André et al. Modeling nonlinear gene regulatory networks from time series gene expression data. Journal of Bioinformatics and Computational Biology, v. 6, n. 5, p. 961-979, 2008Tradução . . Disponível em: https://doi.org/10.1142/s0219720008003746. Acesso em: 03 nov. 2024.
    • APA

      Fujita, A., Sato, J. R., Garay-Malpartida, H. M., Sogayar, M. C., Ferreira, C. E., & Miyano, S. (2008). Modeling nonlinear gene regulatory networks from time series gene expression data. Journal of Bioinformatics and Computational Biology, 6( 5), 961-979. doi:10.1142/s0219720008003746
    • NLM

      Fujita A, Sato JR, Garay-Malpartida HM, Sogayar MC, Ferreira CE, Miyano S. Modeling nonlinear gene regulatory networks from time series gene expression data [Internet]. Journal of Bioinformatics and Computational Biology. 2008 ; 6( 5): 961-979.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/s0219720008003746
    • Vancouver

      Fujita A, Sato JR, Garay-Malpartida HM, Sogayar MC, Ferreira CE, Miyano S. Modeling nonlinear gene regulatory networks from time series gene expression data [Internet]. Journal of Bioinformatics and Computational Biology. 2008 ; 6( 5): 961-979.[citado 2024 nov. 03 ] Available from: https://doi.org/10.1142/s0219720008003746

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024